← home
Github: datasets/vaswani.py

ir_datasets: Vaswani

Index
  1. vaswani

"vaswani"

A small corpus of roughly 11,000 scientific abstracts.

queries
93 queries

Language: en

Query type:
GenericQuery: (namedtuple)
  1. query_id: str
  2. text: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("vaswani")
for query in dataset.queries_iter():
    query # namedtuple<query_id, text>

You can find more details about the Python API here.

CLI
ir_datasets export vaswani queries
[query_id]    [text]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:vaswani')
index_ref = pt.IndexRef.of('./indices/vaswani') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())

You can find more details about PyTerrier retrieval here.

docs
11K docs

Language: en

Document type:
GenericDoc: (namedtuple)
  1. doc_id: str
  2. text: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("vaswani")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, text>

You can find more details about the Python API here.

CLI
ir_datasets export vaswani docs
[doc_id]    [text]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:vaswani')
# Index vaswani
indexer = pt.IterDictIndexer('./indices/vaswani')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])

You can find more details about PyTerrier indexing here.

qrels
2.1K qrels
Query relevance judgment type:
TrecQrel: (namedtuple)
  1. query_id: str
  2. doc_id: str
  3. relevance: int
  4. iteration: str

Relevance levels

Rel.DefinitionCount%
1Relevant2.1K100.0%

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("vaswani")
for qrel in dataset.qrels_iter():
    qrel # namedtuple<query_id, doc_id, relevance, iteration>

You can find more details about the Python API here.

CLI
ir_datasets export vaswani qrels --format tsv
[query_id]    [doc_id]    [relevance]    [iteration]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:vaswani')
index_ref = pt.IndexRef.of('./indices/vaswani') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
    [pipeline],
    dataset.get_topics(),
    dataset.get_qrels(),
    [MAP, nDCG@20]
)

You can find more details about PyTerrier experiments here.

Metadata