ir_datasets
: VaswaniA small corpus of roughly 11,000 scientific abstracts.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("vaswani")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export vaswani queries
[query_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:vaswani')
index_ref = pt.IndexRef.of('./indices/vaswani') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.vaswani.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("vaswani")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:vaswani')
# Index vaswani
indexer = pt.IterDictIndexer('./indices/vaswani')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])
You can find more details about PyTerrier indexing here.
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.vaswani')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Relevant | 2.1K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("vaswani")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export vaswani qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:vaswani')
index_ref = pt.IndexRef.of('./indices/vaswani') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.vaswani.qrels') # AdhocAssessments
for topic_qrels in qrels.iter():
print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
{ "docs": { "count": 11429, "fields": { "doc_id": { "max_len": 5, "common_prefix": "" } } }, "queries": { "count": 93 }, "qrels": { "count": 2083, "fields": { "relevance": { "counts_by_value": { "1": 2083 } } } } }