ir_datasets
: Mr. TyDiA multi-lingual benchmark benchmark suite constructed from the TyDi QA Benchmark. Relevance labels are sparsely assigned based on shallow human annotation.
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }Complete Arabic dataset, including all train, dev, and test queries and qrels.
Language: ar
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ar")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ar queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Language: ar
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ar")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ar docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 17K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ar")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ar qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 2106586, "fields": { "doc_id": { "max_len": 11, "common_prefix": "" } } }, "queries": { "count": 16595 }, "qrels": { "count": 16749, "fields": { "relevance": { "counts_by_value": { "1": 16749 } } } } }
Development set for Arabic
Language: ar
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ar/dev")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ar/dev queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/ar
Language: ar
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ar/dev")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ar/dev docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 3.1K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ar/dev")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ar/dev qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 2106586, "fields": { "doc_id": { "max_len": 11, "common_prefix": "" } } }, "queries": { "count": 3115 }, "qrels": { "count": 3115, "fields": { "relevance": { "counts_by_value": { "1": 3115 } } } } }
Test set for Arabic
Language: ar
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ar/test")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ar/test queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/ar
Language: ar
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ar/test")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ar/test docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 1.3K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ar/test")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ar/test qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 2106586, "fields": { "doc_id": { "max_len": 11, "common_prefix": "" } } }, "queries": { "count": 1081 }, "qrels": { "count": 1257, "fields": { "relevance": { "counts_by_value": { "1": 1257 } } } } }
Train set for Arabic
Language: ar
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ar/train")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ar/train queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/ar
Language: ar
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ar/train")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ar/train docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 12K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ar/train")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ar/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 2106586, "fields": { "doc_id": { "max_len": 11, "common_prefix": "" } } }, "queries": { "count": 12377 }, "qrels": { "count": 12377, "fields": { "relevance": { "counts_by_value": { "1": 12377 } } } } }
Complete Bengali dataset, including all train, dev, and test queries and qrels.
Language: bn
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/bn")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/bn queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Language: bn
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/bn")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/bn docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 2.3K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/bn")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/bn qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 304059, "fields": { "doc_id": { "max_len": 10, "common_prefix": "" } } }, "queries": { "count": 2264 }, "qrels": { "count": 2292, "fields": { "relevance": { "counts_by_value": { "1": 2292 } } } } }
Development set for Bengali
Language: bn
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/bn/dev")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/bn/dev queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/bn
Language: bn
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/bn/dev")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/bn/dev docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 443 | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/bn/dev")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/bn/dev qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 304059, "fields": { "doc_id": { "max_len": 10, "common_prefix": "" } } }, "queries": { "count": 440 }, "qrels": { "count": 443, "fields": { "relevance": { "counts_by_value": { "1": 443 } } } } }
Test set for Bengali
Language: bn
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/bn/test")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/bn/test queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/bn
Language: bn
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/bn/test")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/bn/test docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 130 | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/bn/test")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/bn/test qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 304059, "fields": { "doc_id": { "max_len": 10, "common_prefix": "" } } }, "queries": { "count": 111 }, "qrels": { "count": 130, "fields": { "relevance": { "counts_by_value": { "1": 130 } } } } }
Train set for Bengali
Language: bn
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/bn/train")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/bn/train queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/bn
Language: bn
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/bn/train")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/bn/train docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 1.7K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/bn/train")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/bn/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 304059, "fields": { "doc_id": { "max_len": 10, "common_prefix": "" } } }, "queries": { "count": 1713 }, "qrels": { "count": 1719, "fields": { "relevance": { "counts_by_value": { "1": 1719 } } } } }
Complete English dataset, including all train, dev, and test queries and qrels.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/en")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/en queries
[query_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:mr-tydi/en')
index_ref = pt.IndexRef.of('./indices/mr-tydi_en') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/en")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/en docs
[doc_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:mr-tydi/en')
# Index mr-tydi/en
indexer = pt.IterDictIndexer('./indices/mr-tydi_en')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 5.4K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/en")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/en qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:mr-tydi/en')
index_ref = pt.IndexRef.of('./indices/mr-tydi_en') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 32907100, "fields": { "doc_id": { "max_len": 13, "common_prefix": "" } } }, "queries": { "count": 5194 }, "qrels": { "count": 5360, "fields": { "relevance": { "counts_by_value": { "1": 5360 } } } } }
Development set for English
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/en/dev")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/en/dev queries
[query_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:mr-tydi/en/dev')
index_ref = pt.IndexRef.of('./indices/mr-tydi_en') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
Inherits docs from mr-tydi/en
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/en/dev")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/en/dev docs
[doc_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:mr-tydi/en/dev')
# Index mr-tydi/en
indexer = pt.IterDictIndexer('./indices/mr-tydi_en')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 878 | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/en/dev")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/en/dev qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:mr-tydi/en/dev')
index_ref = pt.IndexRef.of('./indices/mr-tydi_en') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 32907100, "fields": { "doc_id": { "max_len": 13, "common_prefix": "" } } }, "queries": { "count": 878 }, "qrels": { "count": 878, "fields": { "relevance": { "counts_by_value": { "1": 878 } } } } }
Test set for English
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/en/test")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/en/test queries
[query_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:mr-tydi/en/test')
index_ref = pt.IndexRef.of('./indices/mr-tydi_en') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
Inherits docs from mr-tydi/en
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/en/test")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/en/test docs
[doc_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:mr-tydi/en/test')
# Index mr-tydi/en
indexer = pt.IterDictIndexer('./indices/mr-tydi_en')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 935 | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/en/test")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/en/test qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:mr-tydi/en/test')
index_ref = pt.IndexRef.of('./indices/mr-tydi_en') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 32907100, "fields": { "doc_id": { "max_len": 13, "common_prefix": "" } } }, "queries": { "count": 744 }, "qrels": { "count": 935, "fields": { "relevance": { "counts_by_value": { "1": 935 } } } } }
Train set for English
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/en/train")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/en/train queries
[query_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:mr-tydi/en/train')
index_ref = pt.IndexRef.of('./indices/mr-tydi_en') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
Inherits docs from mr-tydi/en
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/en/train")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/en/train docs
[doc_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:mr-tydi/en/train')
# Index mr-tydi/en
indexer = pt.IterDictIndexer('./indices/mr-tydi_en')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 3.5K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/en/train")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/en/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:mr-tydi/en/train')
index_ref = pt.IndexRef.of('./indices/mr-tydi_en') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 32907100, "fields": { "doc_id": { "max_len": 13, "common_prefix": "" } } }, "queries": { "count": 3547 }, "qrels": { "count": 3547, "fields": { "relevance": { "counts_by_value": { "1": 3547 } } } } }
Complete Finnish dataset, including all train, dev, and test queries and qrels.
Language: fi
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/fi")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/fi queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Language: fi
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/fi")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/fi docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 9.8K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/fi")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/fi qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 1908757, "fields": { "doc_id": { "max_len": 11, "common_prefix": "" } } }, "queries": { "count": 9572 }, "qrels": { "count": 9750, "fields": { "relevance": { "counts_by_value": { "1": 9750 } } } } }
Development set for Finnish
Language: fi
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/fi/dev")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/fi/dev queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/fi
Language: fi
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/fi/dev")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/fi/dev docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 1.7K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/fi/dev")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/fi/dev qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 1908757, "fields": { "doc_id": { "max_len": 11, "common_prefix": "" } } }, "queries": { "count": 1738 }, "qrels": { "count": 1738, "fields": { "relevance": { "counts_by_value": { "1": 1738 } } } } }
Test set for Finnish
Language: fi
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/fi/test")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/fi/test queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/fi
Language: fi
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/fi/test")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/fi/test docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 1.5K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/fi/test")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/fi/test qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 1908757, "fields": { "doc_id": { "max_len": 11, "common_prefix": "" } } }, "queries": { "count": 1254 }, "qrels": { "count": 1451, "fields": { "relevance": { "counts_by_value": { "1": 1451 } } } } }
Train set for Finnish
Language: fi
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/fi/train")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/fi/train queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/fi
Language: fi
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/fi/train")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/fi/train docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 6.6K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/fi/train")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/fi/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 1908757, "fields": { "doc_id": { "max_len": 11, "common_prefix": "" } } }, "queries": { "count": 6561 }, "qrels": { "count": 6561, "fields": { "relevance": { "counts_by_value": { "1": 6561 } } } } }
Complete Indonesian dataset, including all train, dev, and test queries and qrels.
Language: id
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/id")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/id queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Language: id
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/id")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/id docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 7.1K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/id")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/id qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 1469399, "fields": { "doc_id": { "max_len": 11, "common_prefix": "" } } }, "queries": { "count": 6977 }, "qrels": { "count": 7087, "fields": { "relevance": { "counts_by_value": { "1": 7087 } } } } }
Development set for Indonesian
Language: id
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/id/dev")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/id/dev queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/id
Language: id
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/id/dev")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/id/dev docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 1.2K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/id/dev")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/id/dev qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 1469399, "fields": { "doc_id": { "max_len": 11, "common_prefix": "" } } }, "queries": { "count": 1224 }, "qrels": { "count": 1224, "fields": { "relevance": { "counts_by_value": { "1": 1224 } } } } }
Test set for Indonesian
Language: id
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/id/test")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/id/test queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/id
Language: id
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/id/test")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/id/test docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 961 | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/id/test")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/id/test qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 1469399, "fields": { "doc_id": { "max_len": 11, "common_prefix": "" } } }, "queries": { "count": 829 }, "qrels": { "count": 961, "fields": { "relevance": { "counts_by_value": { "1": 961 } } } } }
Train set for Indonesian
Language: id
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/id/train")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/id/train queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/id
Language: id
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/id/train")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/id/train docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 4.9K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/id/train")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/id/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 1469399, "fields": { "doc_id": { "max_len": 11, "common_prefix": "" } } }, "queries": { "count": 4902 }, "qrels": { "count": 4902, "fields": { "relevance": { "counts_by_value": { "1": 4902 } } } } }
Complete Japanese dataset, including all train, dev, and test queries and qrels.
Language: ja
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ja")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ja queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Language: ja
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ja")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ja docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 5.5K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ja")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ja qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 7000027, "fields": { "doc_id": { "max_len": 12, "common_prefix": "" } } }, "queries": { "count": 5353 }, "qrels": { "count": 5548, "fields": { "relevance": { "counts_by_value": { "1": 5548 } } } } }
Development set for Japanese
Language: ja
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ja/dev")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ja/dev queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/ja
Language: ja
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ja/dev")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ja/dev docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 928 | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ja/dev")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ja/dev qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 7000027, "fields": { "doc_id": { "max_len": 12, "common_prefix": "" } } }, "queries": { "count": 928 }, "qrels": { "count": 928, "fields": { "relevance": { "counts_by_value": { "1": 928 } } } } }
Test set for Japanese
Language: ja
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ja/test")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ja/test queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/ja
Language: ja
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ja/test")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ja/test docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 923 | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ja/test")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ja/test qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 7000027, "fields": { "doc_id": { "max_len": 12, "common_prefix": "" } } }, "queries": { "count": 720 }, "qrels": { "count": 923, "fields": { "relevance": { "counts_by_value": { "1": 923 } } } } }
Train set for Japanese
Language: ja
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ja/train")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ja/train queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/ja
Language: ja
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ja/train")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ja/train docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 3.7K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ja/train")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ja/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 7000027, "fields": { "doc_id": { "max_len": 12, "common_prefix": "" } } }, "queries": { "count": 3697 }, "qrels": { "count": 3697, "fields": { "relevance": { "counts_by_value": { "1": 3697 } } } } }
Complete Korean dataset, including all train, dev, and test queries and qrels.
Language: ko
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ko")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ko queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Language: ko
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ko")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ko docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 2.1K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ko")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ko qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 1496126, "fields": { "doc_id": { "max_len": 12, "common_prefix": "" } } }, "queries": { "count": 2019 }, "qrels": { "count": 2116, "fields": { "relevance": { "counts_by_value": { "1": 2116 } } } } }
Development set for Korean
Language: ko
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ko/dev")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ko/dev queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/ko
Language: ko
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ko/dev")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ko/dev docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 307 | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ko/dev")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ko/dev qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 1496126, "fields": { "doc_id": { "max_len": 12, "common_prefix": "" } } }, "queries": { "count": 303 }, "qrels": { "count": 307, "fields": { "relevance": { "counts_by_value": { "1": 307 } } } } }
Test set for Korean
Language: ko
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ko/test")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ko/test queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/ko
Language: ko
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ko/test")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ko/test docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 492 | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ko/test")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ko/test qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 1496126, "fields": { "doc_id": { "max_len": 12, "common_prefix": "" } } }, "queries": { "count": 421 }, "qrels": { "count": 492, "fields": { "relevance": { "counts_by_value": { "1": 492 } } } } }
Train set for Korean
Language: ko
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ko/train")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ko/train queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/ko
Language: ko
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ko/train")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ko/train docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 1.3K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ko/train")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ko/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 1496126, "fields": { "doc_id": { "max_len": 12, "common_prefix": "" } } }, "queries": { "count": 1295 }, "qrels": { "count": 1317, "fields": { "relevance": { "counts_by_value": { "1": 1317 } } } } }
Complete Russian dataset, including all train, dev, and test queries and qrels.
Language: ru
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ru")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ru queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Language: ru
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ru")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ru docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 7.9K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ru")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ru qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 9597504, "fields": { "doc_id": { "max_len": 12, "common_prefix": "" } } }, "queries": { "count": 7763 }, "qrels": { "count": 7909, "fields": { "relevance": { "counts_by_value": { "1": 7909 } } } } }
Development set for Russian
Language: ru
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ru/dev")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ru/dev queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/ru
Language: ru
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ru/dev")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ru/dev docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 1.4K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ru/dev")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ru/dev qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 9597504, "fields": { "doc_id": { "max_len": 12, "common_prefix": "" } } }, "queries": { "count": 1375 }, "qrels": { "count": 1375, "fields": { "relevance": { "counts_by_value": { "1": 1375 } } } } }
Test set for Russian
Language: ru
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ru/test")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ru/test queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/ru
Language: ru
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ru/test")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ru/test docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 1.2K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ru/test")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ru/test qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 9597504, "fields": { "doc_id": { "max_len": 12, "common_prefix": "" } } }, "queries": { "count": 995 }, "qrels": { "count": 1168, "fields": { "relevance": { "counts_by_value": { "1": 1168 } } } } }
Train set for Russian
Language: ru
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ru/train")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ru/train queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/ru
Language: ru
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ru/train")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ru/train docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 5.4K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/ru/train")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/ru/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 9597504, "fields": { "doc_id": { "max_len": 12, "common_prefix": "" } } }, "queries": { "count": 5366 }, "qrels": { "count": 5366, "fields": { "relevance": { "counts_by_value": { "1": 5366 } } } } }
Complete Swahili dataset, including all train, dev, and test queries and qrels.
Language: sw
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/sw")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/sw queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Language: sw
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/sw")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/sw docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 3.8K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/sw")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/sw qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 136689, "fields": { "doc_id": { "max_len": 9, "common_prefix": "" } } }, "queries": { "count": 3271 }, "qrels": { "count": 3767, "fields": { "relevance": { "counts_by_value": { "1": 3767 } } } } }
Development set for Swahili
Language: sw
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/sw/dev")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/sw/dev queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/sw
Language: sw
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/sw/dev")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/sw/dev docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 623 | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/sw/dev")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/sw/dev qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 136689, "fields": { "doc_id": { "max_len": 9, "common_prefix": "" } } }, "queries": { "count": 526 }, "qrels": { "count": 623, "fields": { "relevance": { "counts_by_value": { "1": 623 } } } } }
Test set for Swahili
Language: sw
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/sw/test")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/sw/test queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/sw
Language: sw
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/sw/test")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/sw/test docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 743 | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/sw/test")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/sw/test qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 136689, "fields": { "doc_id": { "max_len": 9, "common_prefix": "" } } }, "queries": { "count": 670 }, "qrels": { "count": 743, "fields": { "relevance": { "counts_by_value": { "1": 743 } } } } }
Train set for Swahili
Language: sw
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/sw/train")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/sw/train queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/sw
Language: sw
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/sw/train")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/sw/train docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 2.4K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/sw/train")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/sw/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 136689, "fields": { "doc_id": { "max_len": 9, "common_prefix": "" } } }, "queries": { "count": 2072 }, "qrels": { "count": 2401, "fields": { "relevance": { "counts_by_value": { "1": 2401 } } } } }
Complete Telugu dataset, including all train, dev, and test queries and qrels.
Language: te
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/te")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/te queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Language: te
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/te")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/te docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 5.5K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/te")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/te qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 548224, "fields": { "doc_id": { "max_len": 10, "common_prefix": "" } } }, "queries": { "count": 5517 }, "qrels": { "count": 5540, "fields": { "relevance": { "counts_by_value": { "1": 5540 } } } } }
Development set for Telugu
Language: te
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/te/dev")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/te/dev queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/te
Language: te
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/te/dev")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/te/dev docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 983 | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/te/dev")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/te/dev qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 548224, "fields": { "doc_id": { "max_len": 10, "common_prefix": "" } } }, "queries": { "count": 983 }, "qrels": { "count": 983, "fields": { "relevance": { "counts_by_value": { "1": 983 } } } } }
Test set for Telugu
Language: te
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/te/test")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/te/test queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/te
Language: te
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/te/test")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/te/test docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 677 | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/te/test")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/te/test qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 548224, "fields": { "doc_id": { "max_len": 10, "common_prefix": "" } } }, "queries": { "count": 646 }, "qrels": { "count": 677, "fields": { "relevance": { "counts_by_value": { "1": 677 } } } } }
Train set for Telugu
Language: te
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/te/train")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/te/train queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/te
Language: te
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/te/train")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/te/train docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 3.9K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/te/train")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/te/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 548224, "fields": { "doc_id": { "max_len": 10, "common_prefix": "" } } }, "queries": { "count": 3880 }, "qrels": { "count": 3880, "fields": { "relevance": { "counts_by_value": { "1": 3880 } } } } }
Complete Thai dataset, including all train, dev, and test queries and qrels.
Language: th
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/th")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/th queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Language: th
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/th")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/th docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 5.5K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/th")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/th qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 568855, "fields": { "doc_id": { "max_len": 10, "common_prefix": "" } } }, "queries": { "count": 5322 }, "qrels": { "count": 5545, "fields": { "relevance": { "counts_by_value": { "1": 5545 } } } } }
Development set for Thai
Language: th
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/th/dev")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/th/dev queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/th
Language: th
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/th/dev")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/th/dev docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 817 | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/th/dev")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/th/dev qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 568855, "fields": { "doc_id": { "max_len": 10, "common_prefix": "" } } }, "queries": { "count": 807 }, "qrels": { "count": 817, "fields": { "relevance": { "counts_by_value": { "1": 817 } } } } }
Test set for Thai
Language: th
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/th/test")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/th/test queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/th
Language: th
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/th/test")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/th/test docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 1.4K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/th/test")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/th/test qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 568855, "fields": { "doc_id": { "max_len": 10, "common_prefix": "" } } }, "queries": { "count": 1190 }, "qrels": { "count": 1368, "fields": { "relevance": { "counts_by_value": { "1": 1368 } } } } }
Train set for Thai
Language: th
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/th/train")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/th/train queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Inherits docs from mr-tydi/th
Language: th
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/th/train")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text>
You can find more details about the Python API here.
ir_datasets export mr-tydi/th/train docs
[doc_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Passage identified within Wikipedia article from top Google search results | 3.4K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("mr-tydi/th/train")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export mr-tydi/th/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} }{ "docs": { "count": 568855, "fields": { "doc_id": { "max_len": 10, "common_prefix": "" } } }, "queries": { "count": 3319 }, "qrels": { "count": 3360, "fields": { "relevance": { "counts_by_value": { "1": 3360 } } } } }