ir_datasets
: CODECTo use this dataset, you need a copy the document corpus from here.
The process involves emailing a dataset author, who will provide instructions for downloading the dataset.
ir_datasets expects the source file to be copied/linked under ~/.ir_datasets/codec/v1/comets_documents.jsonl.
CODEC Document Ranking sub-task.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("codec")
for query in dataset.queries_iter():
query # namedtuple<query_id, query, domain, guidelines>
You can find more details about the Python API here.
ir_datasets export codec queries
[query_id] [query] [domain] [guidelines]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:codec')
index_ref = pt.IndexRef.of('./indices/codec') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("codec")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, title, text, url>
You can find more details about the Python API here.
ir_datasets export codec docs
[doc_id] [title] [text] [url]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:codec')
# Index codec
indexer = pt.IterDictIndexer('./indices/codec', meta={"docno": 32})
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['title', 'text', 'url'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Not Relevant. Not useful or on topic. | 2.4K | 38.0% |
1 | Not Valuable. Consists of definitions or background. | 2.2K | 35.7% |
2 | Somewhat Valuable. Includes valuable topic-specific arguments, evidence, or knowledge. | 1.2K | 19.5% |
3 | Very Valuable. Includes central topic-specific arguments, evidence, or knowledge. This does not include general definitions or background. | 416 | 6.7% |
Examples:
import ir_datasets
dataset = ir_datasets.load("codec")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export codec qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:codec')
index_ref = pt.IndexRef.of('./indices/codec') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{mackie2022codec, title={CODEC: Complex Document and Entity Collection}, author={Mackie, Iain and Owoicho, Paul and Gemmell, Carlos and Fischer, Sophie and MacAvaney, Sean and Dalton, Jeffery}, booktitle={Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval}, year={2022} }{ "docs": { "count": 729824, "fields": { "doc_id": { "max_len": 32, "common_prefix": "" } } }, "queries": { "count": 42 }, "qrels": { "count": 6186, "fields": { "relevance": { "counts_by_value": { "2": 1207, "0": 2353, "1": 2210, "3": 416 } } } } }
Subset of codec that only contains topics about economics.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("codec/economics")
for query in dataset.queries_iter():
query # namedtuple<query_id, query, domain, guidelines>
You can find more details about the Python API here.
ir_datasets export codec/economics queries
[query_id] [query] [domain] [guidelines]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:codec/economics')
index_ref = pt.IndexRef.of('./indices/codec') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
Inherits docs from codec
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("codec/economics")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, title, text, url>
You can find more details about the Python API here.
ir_datasets export codec/economics docs
[doc_id] [title] [text] [url]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:codec/economics')
# Index codec
indexer = pt.IterDictIndexer('./indices/codec', meta={"docno": 32})
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['title', 'text', 'url'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Not Relevant. Not useful or on topic. | 660 | 33.5% |
1 | Not Valuable. Consists of definitions or background. | 693 | 35.2% |
2 | Somewhat Valuable. Includes valuable topic-specific arguments, evidence, or knowledge. | 458 | 23.2% |
3 | Very Valuable. Includes central topic-specific arguments, evidence, or knowledge. This does not include general definitions or background. | 159 | 8.1% |
Examples:
import ir_datasets
dataset = ir_datasets.load("codec/economics")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance>
You can find more details about the Python API here.
ir_datasets export codec/economics qrels --format tsv
[query_id] [doc_id] [relevance]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:codec/economics')
index_ref = pt.IndexRef.of('./indices/codec') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{mackie2022codec, title={CODEC: Complex Document and Entity Collection}, author={Mackie, Iain and Owoicho, Paul and Gemmell, Carlos and Fischer, Sophie and MacAvaney, Sean and Dalton, Jeffery}, booktitle={Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval}, year={2022} }{ "docs": { "count": 729824, "fields": { "doc_id": { "max_len": 32, "common_prefix": "" } } }, "queries": { "count": 14 }, "qrels": { "count": 1970, "fields": { "relevance": { "counts_by_value": { "2": 458, "0": 660, "1": 693, "3": 159 } } } } }
Subset of codec that only contains topics about history.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("codec/history")
for query in dataset.queries_iter():
query # namedtuple<query_id, query, domain, guidelines>
You can find more details about the Python API here.
ir_datasets export codec/history queries
[query_id] [query] [domain] [guidelines]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:codec/history')
index_ref = pt.IndexRef.of('./indices/codec') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
Inherits docs from codec
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("codec/history")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, title, text, url>
You can find more details about the Python API here.
ir_datasets export codec/history docs
[doc_id] [title] [text] [url]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:codec/history')
# Index codec
indexer = pt.IterDictIndexer('./indices/codec', meta={"docno": 32})
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['title', 'text', 'url'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Not Relevant. Not useful or on topic. | 998 | 49.3% |
1 | Not Valuable. Consists of definitions or background. | 618 | 30.5% |
2 | Somewhat Valuable. Includes valuable topic-specific arguments, evidence, or knowledge. | 292 | 14.4% |
3 | Very Valuable. Includes central topic-specific arguments, evidence, or knowledge. This does not include general definitions or background. | 116 | 5.7% |
Examples:
import ir_datasets
dataset = ir_datasets.load("codec/history")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance>
You can find more details about the Python API here.
ir_datasets export codec/history qrels --format tsv
[query_id] [doc_id] [relevance]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:codec/history')
index_ref = pt.IndexRef.of('./indices/codec') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{mackie2022codec, title={CODEC: Complex Document and Entity Collection}, author={Mackie, Iain and Owoicho, Paul and Gemmell, Carlos and Fischer, Sophie and MacAvaney, Sean and Dalton, Jeffery}, booktitle={Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval}, year={2022} }{ "docs": { "count": 729824, "fields": { "doc_id": { "max_len": 32, "common_prefix": "" } } }, "queries": { "count": 14 }, "qrels": { "count": 2024, "fields": { "relevance": { "counts_by_value": { "0": 998, "1": 618, "2": 292, "3": 116 } } } } }
Subset of codec that only contains topics about politics.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("codec/politics")
for query in dataset.queries_iter():
query # namedtuple<query_id, query, domain, guidelines>
You can find more details about the Python API here.
ir_datasets export codec/politics queries
[query_id] [query] [domain] [guidelines]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:codec/politics')
index_ref = pt.IndexRef.of('./indices/codec') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
Inherits docs from codec
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("codec/politics")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, title, text, url>
You can find more details about the Python API here.
ir_datasets export codec/politics docs
[doc_id] [title] [text] [url]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:codec/politics')
# Index codec
indexer = pt.IterDictIndexer('./indices/codec', meta={"docno": 32})
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['title', 'text', 'url'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Not Relevant. Not useful or on topic. | 695 | 31.7% |
1 | Not Valuable. Consists of definitions or background. | 899 | 41.0% |
2 | Somewhat Valuable. Includes valuable topic-specific arguments, evidence, or knowledge. | 457 | 20.8% |
3 | Very Valuable. Includes central topic-specific arguments, evidence, or knowledge. This does not include general definitions or background. | 141 | 6.4% |
Examples:
import ir_datasets
dataset = ir_datasets.load("codec/politics")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance>
You can find more details about the Python API here.
ir_datasets export codec/politics qrels --format tsv
[query_id] [doc_id] [relevance]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:codec/politics')
index_ref = pt.IndexRef.of('./indices/codec') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{mackie2022codec, title={CODEC: Complex Document and Entity Collection}, author={Mackie, Iain and Owoicho, Paul and Gemmell, Carlos and Fischer, Sophie and MacAvaney, Sean and Dalton, Jeffery}, booktitle={Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval}, year={2022} }{ "docs": { "count": 729824, "fields": { "doc_id": { "max_len": 32, "common_prefix": "" } } }, "queries": { "count": 14 }, "qrels": { "count": 2192, "fields": { "relevance": { "counts_by_value": { "3": 141, "2": 457, "1": 899, "0": 695 } } } } }