ir_datasets: TREC Fair RankingThe TREC Fair Ranking track evaluates systems according to how well they fairly rank documents.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("trec-fair-2021")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, title, text, marked_up_text, url, quality_score, geographic_locations, quality_score_disk>
You can find more details about the Python API here.
ir_datasets export trec-fair-2021 docs
[doc_id]    [title]    [text]    [marked_up_text]    [url]    [quality_score]    [geographic_locations]    [quality_score_disk]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:trec-fair-2021')
# Index trec-fair-2021
indexer = pt.IterDictIndexer('./indices/trec-fair-2021')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['title', 'text', 'url'])
You can find more details about PyTerrier indexing here.
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.trec-fair-2021')
for doc in dataset.iter_documents():
    print(doc)  # an AdhocDocumentStore
    break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
{
  "docs": {
    "count": 6280328,
    "fields": {
      "doc_id": {
        "max_len": 8,
        "common_prefix": ""
      }
    }
  }
}
Official TREC Fair Ranking 2021 evaluation set.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("trec-fair-2021/eval")
for query in dataset.queries_iter():
    query # namedtuple<query_id, text, keywords, scope>
You can find more details about the Python API here.
ir_datasets export trec-fair-2021/eval queries
[query_id]    [text]    [keywords]    [scope]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:trec-fair-2021/eval')
index_ref = pt.IndexRef.of('./indices/trec-fair-2021') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('text'))
You can find more details about PyTerrier retrieval here.
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.trec-fair-2021.eval.queries')  # AdhocTopics
for topic in topics.iter():
    print(topic)  # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from trec-fair-2021
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("trec-fair-2021/eval")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, title, text, marked_up_text, url, quality_score, geographic_locations, quality_score_disk>
You can find more details about the Python API here.
ir_datasets export trec-fair-2021/eval docs
[doc_id]    [title]    [text]    [marked_up_text]    [url]    [quality_score]    [geographic_locations]    [quality_score_disk]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:trec-fair-2021/eval')
# Index trec-fair-2021
indexer = pt.IterDictIndexer('./indices/trec-fair-2021')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['title', 'text', 'url'])
You can find more details about PyTerrier indexing here.
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.trec-fair-2021.eval')
for doc in dataset.iter_documents():
    print(doc)  # an AdhocDocumentStore
    break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
| Rel. | Definition | Count | % | 
|---|---|---|---|
| 1 | relevant | 14K | 100.0% | 
Examples:
import ir_datasets
dataset = ir_datasets.load("trec-fair-2021/eval")
for qrel in dataset.qrels_iter():
    qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export trec-fair-2021/eval qrels --format tsv
[query_id]    [doc_id]    [relevance]    [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:trec-fair-2021/eval')
index_ref = pt.IndexRef.of('./indices/trec-fair-2021') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
    [pipeline],
    dataset.get_topics('text'),
    dataset.get_qrels(),
    [MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.trec-fair-2021.eval.qrels')  # AdhocAssessments
for topic_qrels in qrels.iter():
    print(topic_qrels)  # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
{
  "docs": {
    "count": 6280328,
    "fields": {
      "doc_id": {
        "max_len": 8,
        "common_prefix": ""
      }
    }
  },
  "queries": {
    "count": 49
  },
  "qrels": {
    "count": 13757,
    "fields": {
      "relevance": {
        "counts_by_value": {
          "1": 13757
        }
      }
    }
  }
}
Official TREC Fair Ranking 2021 train set.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("trec-fair-2021/train")
for query in dataset.queries_iter():
    query # namedtuple<query_id, text, keywords, scope, homepage>
You can find more details about the Python API here.
ir_datasets export trec-fair-2021/train queries
[query_id]    [text]    [keywords]    [scope]    [homepage]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:trec-fair-2021/train')
index_ref = pt.IndexRef.of('./indices/trec-fair-2021') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('text'))
You can find more details about PyTerrier retrieval here.
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.trec-fair-2021.train.queries')  # AdhocTopics
for topic in topics.iter():
    print(topic)  # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from trec-fair-2021
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("trec-fair-2021/train")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, title, text, marked_up_text, url, quality_score, geographic_locations, quality_score_disk>
You can find more details about the Python API here.
ir_datasets export trec-fair-2021/train docs
[doc_id]    [title]    [text]    [marked_up_text]    [url]    [quality_score]    [geographic_locations]    [quality_score_disk]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:trec-fair-2021/train')
# Index trec-fair-2021
indexer = pt.IterDictIndexer('./indices/trec-fair-2021')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['title', 'text', 'url'])
You can find more details about PyTerrier indexing here.
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.trec-fair-2021.train')
for doc in dataset.iter_documents():
    print(doc)  # an AdhocDocumentStore
    break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
| Rel. | Definition | Count | % | 
|---|---|---|---|
| 1 | relevant | 2.2M | 100.0% | 
Examples:
import ir_datasets
dataset = ir_datasets.load("trec-fair-2021/train")
for qrel in dataset.qrels_iter():
    qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export trec-fair-2021/train qrels --format tsv
[query_id]    [doc_id]    [relevance]    [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:trec-fair-2021/train')
index_ref = pt.IndexRef.of('./indices/trec-fair-2021') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
    [pipeline],
    dataset.get_topics('text'),
    dataset.get_qrels(),
    [MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.trec-fair-2021.train.qrels')  # AdhocAssessments
for topic_qrels in qrels.iter():
    print(topic_qrels)  # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
{
  "docs": {
    "count": 6280328,
    "fields": {
      "doc_id": {
        "max_len": 8,
        "common_prefix": ""
      }
    }
  },
  "queries": {
    "count": 57
  },
  "qrels": {
    "count": 2185446,
    "fields": {
      "relevance": {
        "counts_by_value": {
          "1": 2185446
        }
      }
    }
  }
}