ir_datasets
: Washington PostTo use this dataset, you need a copy of Washington Post Collection, provided by NIST.
Your organization may already have a copy. If this is the case, you may only need to complete a new "Individual Argeement". Otherwise, your organization will need to file the "Organizational agreement" with NIST. It can take some time to process, but you will end up with a password-protected download link.
The source file required is WashingtonPost.v2.tar.gz.
ir_datasets expects the above file to be copied/linked under ~/.ir_datasets/wapo/WashingtonPost.v2.tar.gz.
The Washington Post collection.
Version 2 of the Washington Post collection, consisting of articles published between 2012-2017.
The collection is obtained from NIST by requesting it from NIST here.
body contains all body text in plain text format, including paragrphs and multi-media captions. body_paras_html contains only source paragraphs and contains HTML markup. body_media contains images, videos, tweets, and galeries, along with a link to the content and a textual caption.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("wapo/v2")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, title, author, published_date, kicker, body, body_paras_html, body_media>
You can find more details about the Python API here.
ir_datasets export wapo/v2 docs
[doc_id] [url] [title] [author] [published_date] [kicker] [body] [body_paras_html] [body_media]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:wapo/v2')
# Index wapo/v2
indexer = pt.IterDictIndexer('./indices/wapo_v2')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['url', 'title', 'author', 'kicker', 'body'])
You can find more details about PyTerrier indexing here.
The TREC Common Core 2018 benchmark.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("wapo/v2/trec-core-2018")
for query in dataset.queries_iter():
query # namedtuple<query_id, title, description, narrative>
You can find more details about the Python API here.
ir_datasets export wapo/v2/trec-core-2018 queries
[query_id] [title] [description] [narrative]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:wapo/v2/trec-core-2018')
index_ref = pt.IndexRef.of('./indices/wapo_v2') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('title'))
You can find more details about PyTerrier retrieval here.
Inherits docs from wapo/v2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("wapo/v2/trec-core-2018")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, title, author, published_date, kicker, body, body_paras_html, body_media>
You can find more details about the Python API here.
ir_datasets export wapo/v2/trec-core-2018 docs
[doc_id] [url] [title] [author] [published_date] [kicker] [body] [body_paras_html] [body_media]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:wapo/v2/trec-core-2018')
# Index wapo/v2
indexer = pt.IterDictIndexer('./indices/wapo_v2')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['url', 'title', 'author', 'kicker', 'body'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
0 | not relevant |
1 | relevant |
2 | highly relevant |
Examples:
import ir_datasets
dataset = ir_datasets.load("wapo/v2/trec-core-2018")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export wapo/v2/trec-core-2018 qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:wapo/v2/trec-core-2018')
index_ref = pt.IndexRef.of('./indices/wapo_v2') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics('title'),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
The TREC News 2018 Background Linking task. The task is to find relevant background information for the provided articles.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("wapo/v2/trec-news-2018")
for query in dataset.queries_iter():
query # namedtuple<query_id, doc_id, url>
You can find more details about the Python API here.
ir_datasets export wapo/v2/trec-news-2018 queries
[query_id] [doc_id] [url]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:wapo/v2/trec-news-2018')
index_ref = pt.IndexRef.of('./indices/wapo_v2') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('doc_id'))
You can find more details about PyTerrier retrieval here.
Inherits docs from wapo/v2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("wapo/v2/trec-news-2018")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, title, author, published_date, kicker, body, body_paras_html, body_media>
You can find more details about the Python API here.
ir_datasets export wapo/v2/trec-news-2018 docs
[doc_id] [url] [title] [author] [published_date] [kicker] [body] [body_paras_html] [body_media]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:wapo/v2/trec-news-2018')
# Index wapo/v2
indexer = pt.IterDictIndexer('./indices/wapo_v2')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['url', 'title', 'author', 'kicker', 'body'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
0 | The document provides little or no useful background information. |
2 | The document provides some useful background or contextual information that would help the user understand the broader story context of the target article. |
4 | The document provides significantly useful background ... |
8 | The document provides essential useful background ... |
16 | The document _must_ appear in the sidebar otherwise critical context is missing. |
Examples:
import ir_datasets
dataset = ir_datasets.load("wapo/v2/trec-news-2018")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export wapo/v2/trec-news-2018 qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:wapo/v2/trec-news-2018')
index_ref = pt.IndexRef.of('./indices/wapo_v2') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics('doc_id'),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{Soboroff2018News, title={TREC 2018 News Track Overview}, author={Ian Soboroff and Shudong Huang and Donna Harman}, booktitle={TREC}, year={2018} }The TREC News 2019 Background Linking task. The task is to find relevant background information for the provided articles.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("wapo/v2/trec-news-2019")
for query in dataset.queries_iter():
query # namedtuple<query_id, doc_id, url>
You can find more details about the Python API here.
ir_datasets export wapo/v2/trec-news-2019 queries
[query_id] [doc_id] [url]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:wapo/v2/trec-news-2019')
index_ref = pt.IndexRef.of('./indices/wapo_v2') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('doc_id'))
You can find more details about PyTerrier retrieval here.
Inherits docs from wapo/v2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("wapo/v2/trec-news-2019")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, title, author, published_date, kicker, body, body_paras_html, body_media>
You can find more details about the Python API here.
ir_datasets export wapo/v2/trec-news-2019 docs
[doc_id] [url] [title] [author] [published_date] [kicker] [body] [body_paras_html] [body_media]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:wapo/v2/trec-news-2019')
# Index wapo/v2
indexer = pt.IterDictIndexer('./indices/wapo_v2')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['url', 'title', 'author', 'kicker', 'body'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
0 | The document provides little or no useful background information. |
2 | The document provides some useful background or contextual information that would help the user understand the broader story context of the target article. |
4 | The document provides significantly useful background ... |
8 | The document provides essential useful background ... |
16 | The document _must_ appear in the sidebar otherwise critical context is missing. |
Examples:
import ir_datasets
dataset = ir_datasets.load("wapo/v2/trec-news-2019")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export wapo/v2/trec-news-2019 qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:wapo/v2/trec-news-2019')
index_ref = pt.IndexRef.of('./indices/wapo_v2') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics('doc_id'),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{Soboroff2019News, title={TREC 2019 News Track Overview}, author={Ian Soboroff and Shudong Huang and Donna Harman}, booktitle={TREC}, year={2019} }The TREC News 2020 Background Linking task. The task is to find relevant background information for the provided articles.
If you have a copy of the v3 dataset, we would appreciate a pull request to add support!
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("wapo/v3/trec-news-2020")
for query in dataset.queries_iter():
query # namedtuple<query_id, doc_id, url>
You can find more details about the Python API here.
ir_datasets export wapo/v3/trec-news-2020 queries
[query_id] [doc_id] [url]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition |
---|---|
0 | The document provides little or no useful background information. |
2 | The document provides some useful background or contextual information that would help the user understand the broader story context of the target article. |
4 | The document provides significantly useful background ... |
8 | The document provides essential useful background ... |
16 | The document _must_ appear in the sidebar otherwise critical context is missing. |
Examples:
import ir_datasets
dataset = ir_datasets.load("wapo/v3/trec-news-2020")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export wapo/v3/trec-news-2020 qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier