ir_datasets
: MSMARCO (passage, version 2)Version 2 of the MS MARCO passage ranking dataset. The corpus contains 138M passages, which can be linked up with documents in msmarco-document-v2.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("msmarco-passage-v2")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text, spans, msmarco_document_id>
You can find more details about the Python API here.
ir_datasets export msmarco-passage-v2 docs
[doc_id] [text] [spans] [msmarco_document_id]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:msmarco-passage-v2')
# Index msmarco-passage-v2
indexer = pt.IterDictIndexer('./indices/msmarco-passage-v2')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])
You can find more details about PyTerrier indexing here.
Bibtex:
@inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} }Official dev1 set with 3,903 queries.
Official evaluation measures: RR@10
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("msmarco-passage-v2/dev1")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export msmarco-passage-v2/dev1 queries
[query_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:msmarco-passage-v2/dev1')
index_ref = pt.IndexRef.of('./indices/msmarco-passage-v2') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
Language: en
Note: Uses docs from msmarco-passage-v2
Examples:
import ir_datasets
dataset = ir_datasets.load("msmarco-passage-v2/dev1")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text, spans, msmarco_document_id>
You can find more details about the Python API here.
ir_datasets export msmarco-passage-v2/dev1 docs
[doc_id] [text] [spans] [msmarco_document_id]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:msmarco-passage-v2/dev1')
# Index msmarco-passage-v2
indexer = pt.IterDictIndexer('./indices/msmarco-passage-v2')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
1 | Labeled by crowd worker as relevant |
Examples:
import ir_datasets
dataset = ir_datasets.load("msmarco-passage-v2/dev1")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export msmarco-passage-v2/dev1 qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:msmarco-passage-v2/dev1')
index_ref = pt.IndexRef.of('./indices/msmarco-passage-v2') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[RR@10]
)
You can find more details about PyTerrier experiments here.
Examples:
import ir_datasets
dataset = ir_datasets.load("msmarco-passage-v2/dev1")
for scoreddoc in dataset.scoreddocs_iter():
scoreddoc # namedtuple<query_id, doc_id, score>
You can find more details about the Python API here.
ir_datasets export msmarco-passage-v2/dev1 scoreddocs --format tsv
[query_id] [doc_id] [score]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} }Official dev2 set with 4,281 queries.
Official evaluation measures: RR@10
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("msmarco-passage-v2/dev2")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export msmarco-passage-v2/dev2 queries
[query_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:msmarco-passage-v2/dev2')
index_ref = pt.IndexRef.of('./indices/msmarco-passage-v2') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
Language: en
Note: Uses docs from msmarco-passage-v2
Examples:
import ir_datasets
dataset = ir_datasets.load("msmarco-passage-v2/dev2")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text, spans, msmarco_document_id>
You can find more details about the Python API here.
ir_datasets export msmarco-passage-v2/dev2 docs
[doc_id] [text] [spans] [msmarco_document_id]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:msmarco-passage-v2/dev2')
# Index msmarco-passage-v2
indexer = pt.IterDictIndexer('./indices/msmarco-passage-v2')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
1 | Labeled by crowd worker as relevant |
Examples:
import ir_datasets
dataset = ir_datasets.load("msmarco-passage-v2/dev2")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export msmarco-passage-v2/dev2 qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:msmarco-passage-v2/dev2')
index_ref = pt.IndexRef.of('./indices/msmarco-passage-v2') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[RR@10]
)
You can find more details about PyTerrier experiments here.
Examples:
import ir_datasets
dataset = ir_datasets.load("msmarco-passage-v2/dev2")
for scoreddoc in dataset.scoreddocs_iter():
scoreddoc # namedtuple<query_id, doc_id, score>
You can find more details about the Python API here.
ir_datasets export msmarco-passage-v2/dev2 scoreddocs --format tsv
[query_id] [doc_id] [score]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} }Official train set with 277,144 queries.
Official evaluation measures: RR@10
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("msmarco-passage-v2/train")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export msmarco-passage-v2/train queries
[query_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:msmarco-passage-v2/train')
index_ref = pt.IndexRef.of('./indices/msmarco-passage-v2') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
Language: en
Note: Uses docs from msmarco-passage-v2
Examples:
import ir_datasets
dataset = ir_datasets.load("msmarco-passage-v2/train")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text, spans, msmarco_document_id>
You can find more details about the Python API here.
ir_datasets export msmarco-passage-v2/train docs
[doc_id] [text] [spans] [msmarco_document_id]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:msmarco-passage-v2/train')
# Index msmarco-passage-v2
indexer = pt.IterDictIndexer('./indices/msmarco-passage-v2')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
1 | Labeled by crowd worker as relevant |
Examples:
import ir_datasets
dataset = ir_datasets.load("msmarco-passage-v2/train")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export msmarco-passage-v2/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:msmarco-passage-v2/train')
index_ref = pt.IndexRef.of('./indices/msmarco-passage-v2') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[RR@10]
)
You can find more details about PyTerrier experiments here.
Examples:
import ir_datasets
dataset = ir_datasets.load("msmarco-passage-v2/train")
for scoreddoc in dataset.scoreddocs_iter():
scoreddoc # namedtuple<query_id, doc_id, score>
You can find more details about the Python API here.
ir_datasets export msmarco-passage-v2/train scoreddocs --format tsv
[query_id] [doc_id] [score]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} }