← home
Github: datasets/pmc.py

ir_datasets: PubMed Central (TREC CDS)

Index
  1. pmc
  2. pmc/v1
  3. pmc/v1/trec-cds-2014
  4. pmc/v1/trec-cds-2015
  5. pmc/v2
  6. pmc/v2/trec-cds-2016

"pmc"

Bio-medical articles from PubMed Central. Right now, only includes subsets used for the TREC Clinical Decision Support (CDS) 2014-16 tasks.


"pmc/v1"

Subset of PMC articles used for the TREC 2014 and 2015 tasks (v1). Inclues titles, abstracts, full text. Collected from the open access segment on January 21, 2014.

docs

Language: en

Document type:
PmcDoc: (namedtuple)
  1. doc_id: str
  2. journal: str
  3. title: str
  4. abstract: str
  5. body: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("pmc/v1")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, journal, title, abstract, body>

You can find more details about the Python API here.

CLI
ir_datasets export pmc/v1 docs
[doc_id]    [journal]    [title]    [abstract]    [body]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:pmc/v1')
# Index pmc/v1
indexer = pt.IterDictIndexer('./indices/pmc_v1')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['journal', 'title', 'abstract', 'body'])

You can find more details about PyTerrier indexing here.


"pmc/v1/trec-cds-2014"

The TREC Clinical Decision Support (CDS) track from 2014.

queries

Language: en

Query type:
TrecCdsQuery: (namedtuple)
  1. query_id: str
  2. type: str
  3. description: str
  4. summary: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("pmc/v1/trec-cds-2014")
for query in dataset.queries_iter():
    query # namedtuple<query_id, type, description, summary>

You can find more details about the Python API here.

CLI
ir_datasets export pmc/v1/trec-cds-2014 queries
[query_id]    [type]    [description]    [summary]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:pmc/v1/trec-cds-2014')
index_ref = pt.IndexRef.of('./indices/pmc_v1') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('type'))

You can find more details about PyTerrier retrieval here.

docs

Language: en

Note: Uses docs from pmc/v1

Document type:
PmcDoc: (namedtuple)
  1. doc_id: str
  2. journal: str
  3. title: str
  4. abstract: str
  5. body: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("pmc/v1/trec-cds-2014")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, journal, title, abstract, body>

You can find more details about the Python API here.

CLI
ir_datasets export pmc/v1/trec-cds-2014 docs
[doc_id]    [journal]    [title]    [abstract]    [body]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:pmc/v1/trec-cds-2014')
# Index pmc/v1
indexer = pt.IterDictIndexer('./indices/pmc_v1')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['journal', 'title', 'abstract', 'body'])

You can find more details about PyTerrier indexing here.

qrels
Query relevance judgment type:
TrecQrel: (namedtuple)
  1. query_id: str
  2. doc_id: str
  3. relevance: int
  4. iteration: str

Relevance levels

Rel.Definition
0not relevant
1possibly relevant
2definitely relevant

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("pmc/v1/trec-cds-2014")
for qrel in dataset.qrels_iter():
    qrel # namedtuple<query_id, doc_id, relevance, iteration>

You can find more details about the Python API here.

CLI
ir_datasets export pmc/v1/trec-cds-2014 qrels --format tsv
[query_id]    [doc_id]    [relevance]    [iteration]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:pmc/v1/trec-cds-2014')
index_ref = pt.IndexRef.of('./indices/pmc_v1') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
    [pipeline],
    dataset.get_topics('type'),
    dataset.get_qrels(),
    [MAP, nDCG@20]
)

You can find more details about PyTerrier experiments here.

Citation

ir_datasets.bib:

\cite{Simpson2014TrecCds}

Bibtex:

@inproceedings{Simpson2014TrecCds, title={Overview of the TREC 2014 Clinical Decision Support Track}, author={Matthew S. Simpson and Ellen M. Voorhees and William Hersh}, booktitle={TREC}, year={2014} }

"pmc/v1/trec-cds-2015"

The TREC Clinical Decision Support (CDS) track from 2015.

queries

Language: en

Query type:
TrecCdsQuery: (namedtuple)
  1. query_id: str
  2. type: str
  3. description: str
  4. summary: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("pmc/v1/trec-cds-2015")
for query in dataset.queries_iter():
    query # namedtuple<query_id, type, description, summary>

You can find more details about the Python API here.

CLI
ir_datasets export pmc/v1/trec-cds-2015 queries
[query_id]    [type]    [description]    [summary]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:pmc/v1/trec-cds-2015')
index_ref = pt.IndexRef.of('./indices/pmc_v1') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('type'))

You can find more details about PyTerrier retrieval here.

docs

Language: en

Note: Uses docs from pmc/v1

Document type:
PmcDoc: (namedtuple)
  1. doc_id: str
  2. journal: str
  3. title: str
  4. abstract: str
  5. body: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("pmc/v1/trec-cds-2015")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, journal, title, abstract, body>

You can find more details about the Python API here.

CLI
ir_datasets export pmc/v1/trec-cds-2015 docs
[doc_id]    [journal]    [title]    [abstract]    [body]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:pmc/v1/trec-cds-2015')
# Index pmc/v1
indexer = pt.IterDictIndexer('./indices/pmc_v1')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['journal', 'title', 'abstract', 'body'])

You can find more details about PyTerrier indexing here.

qrels
Query relevance judgment type:
TrecQrel: (namedtuple)
  1. query_id: str
  2. doc_id: str
  3. relevance: int
  4. iteration: str

Relevance levels

Rel.Definition
0not relevant
1possibly relevant
2definitely relevant

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("pmc/v1/trec-cds-2015")
for qrel in dataset.qrels_iter():
    qrel # namedtuple<query_id, doc_id, relevance, iteration>

You can find more details about the Python API here.

CLI
ir_datasets export pmc/v1/trec-cds-2015 qrels --format tsv
[query_id]    [doc_id]    [relevance]    [iteration]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:pmc/v1/trec-cds-2015')
index_ref = pt.IndexRef.of('./indices/pmc_v1') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
    [pipeline],
    dataset.get_topics('type'),
    dataset.get_qrels(),
    [MAP, nDCG@20]
)

You can find more details about PyTerrier experiments here.

Citation

ir_datasets.bib:

\cite{Roberts2015TrecCds}

Bibtex:

@inproceedings{Roberts2015TrecCds, title={Overview of the TREC 2015 Clinical Decision Support Track}, author={Kirk Roberts and Matthew S. Simpson and Ellen Voorhees and William R. Hersh}, booktitle={TREC}, year={2015} }

"pmc/v2"

Subset of PMC articles used for the TREC 2016 task (v2). Inclues titles, abstracts, full text. Collected from the open access segment on March 28, 2016.

docs

Language: en

Document type:
PmcDoc: (namedtuple)
  1. doc_id: str
  2. journal: str
  3. title: str
  4. abstract: str
  5. body: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("pmc/v2")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, journal, title, abstract, body>

You can find more details about the Python API here.

CLI
ir_datasets export pmc/v2 docs
[doc_id]    [journal]    [title]    [abstract]    [body]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:pmc/v2')
# Index pmc/v2
indexer = pt.IterDictIndexer('./indices/pmc_v2')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['journal', 'title', 'abstract', 'body'])

You can find more details about PyTerrier indexing here.


"pmc/v2/trec-cds-2016"

The TREC Clinical Decision Support (CDS) track from 2016.

queries

Language: en

Query type:
TrecCds2016Query: (namedtuple)
  1. query_id: str
  2. type: str
  3. note: str
  4. description: str
  5. summary: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("pmc/v2/trec-cds-2016")
for query in dataset.queries_iter():
    query # namedtuple<query_id, type, note, description, summary>

You can find more details about the Python API here.

CLI
ir_datasets export pmc/v2/trec-cds-2016 queries
[query_id]    [type]    [note]    [description]    [summary]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:pmc/v2/trec-cds-2016')
index_ref = pt.IndexRef.of('./indices/pmc_v2') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('type'))

You can find more details about PyTerrier retrieval here.

docs

Language: en

Note: Uses docs from pmc/v2

Document type:
PmcDoc: (namedtuple)
  1. doc_id: str
  2. journal: str
  3. title: str
  4. abstract: str
  5. body: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("pmc/v2/trec-cds-2016")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, journal, title, abstract, body>

You can find more details about the Python API here.

CLI
ir_datasets export pmc/v2/trec-cds-2016 docs
[doc_id]    [journal]    [title]    [abstract]    [body]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:pmc/v2/trec-cds-2016')
# Index pmc/v2
indexer = pt.IterDictIndexer('./indices/pmc_v2')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['journal', 'title', 'abstract', 'body'])

You can find more details about PyTerrier indexing here.

qrels
Query relevance judgment type:
TrecQrel: (namedtuple)
  1. query_id: str
  2. doc_id: str
  3. relevance: int
  4. iteration: str

Relevance levels

Rel.Definition
0not relevant
1possibly relevant
2definitely relevant

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("pmc/v2/trec-cds-2016")
for qrel in dataset.qrels_iter():
    qrel # namedtuple<query_id, doc_id, relevance, iteration>

You can find more details about the Python API here.

CLI
ir_datasets export pmc/v2/trec-cds-2016 qrels --format tsv
[query_id]    [doc_id]    [relevance]    [iteration]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:pmc/v2/trec-cds-2016')
index_ref = pt.IndexRef.of('./indices/pmc_v2') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
    [pipeline],
    dataset.get_topics('type'),
    dataset.get_qrels(),
    [MAP, nDCG@20]
)

You can find more details about PyTerrier experiments here.

Citation

ir_datasets.bib:

\cite{Roberts2016TrecCds}

Bibtex:

@inproceedings{Roberts2016TrecCds, title={Overview of the TREC 2016 Clinical Decision Support Track}, author={Kirk Roberts and Dina Demner-Fushman and Ellen M. Voorhees and William R. Hersh}, booktitle={TREC}, year={2016} }