ir_datasets
: NFCorpus (NutritionFacts)"NFCorpus is a full-text English retrieval data set for Medical Information Retrieval. It contains a total of 3,244 natural language queries (written in non-technical English, harvested from the NutritionFacts.org site) with 169,756 automatically extracted relevance judgments for 9,964 medical documents (written in a complex terminology-heavy language), mostly from PubMed."
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, title, abstract>
You can find more details about the Python API here.
ir_datasets export nfcorpus docs
[doc_id] [url] [title] [abstract]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus')
# Index nfcorpus
indexer = pt.IterDictIndexer('./indices/nfcorpus')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['url', 'title', 'abstract'])
You can find more details about PyTerrier indexing here.
Bibtex:
@inproceedings{Boteva2016Nfcorpus, title="A Full-Text Learning to Rank Dataset for Medical Information Retrieval", author = "Vera Boteva and Demian Gholipour and Artem Sokolov and Stefan Riezler", booktitle = "Proceedings of the European Conference on Information Retrieval ({ECIR})", location = "Padova, Italy", publisher = "Springer", year = 2016 }Official dev set. Queries include both title and combinted "all" text field (titles, descriptions, topics, transcripts and comments)
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/dev")
for query in dataset.queries_iter():
query # namedtuple<query_id, title, all>
You can find more details about the Python API here.
ir_datasets export nfcorpus/dev queries
[query_id] [title] [all]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/dev')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('title'))
You can find more details about PyTerrier retrieval here.
Language: en
Note: Uses docs from nfcorpus
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/dev")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, title, abstract>
You can find more details about the Python API here.
ir_datasets export nfcorpus/dev docs
[doc_id] [url] [title] [abstract]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/dev')
# Index nfcorpus
indexer = pt.IterDictIndexer('./indices/nfcorpus')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['url', 'title', 'abstract'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
0 | Marginally relevant, based on topic containment. |
1 | A link exists from the query to another query that directly links to the document. |
2 | A direct link from the query to the document the cited sources section of a page. |
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/dev")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export nfcorpus/dev qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/dev')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics('title'),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{Boteva2016Nfcorpus, title="A Full-Text Learning to Rank Dataset for Medical Information Retrieval", author = "Vera Boteva and Demian Gholipour and Artem Sokolov and Stefan Riezler", booktitle = "Proceedings of the European Conference on Information Retrieval ({ECIR})", location = "Padova, Italy", publisher = "Springer", year = 2016 }Official dev set, filtered to exclude queries from topic pages.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/dev/nontopic")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export nfcorpus/dev/nontopic queries
[query_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/dev/nontopic')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
Language: en
Note: Uses docs from nfcorpus
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/dev/nontopic")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, title, abstract>
You can find more details about the Python API here.
ir_datasets export nfcorpus/dev/nontopic docs
[doc_id] [url] [title] [abstract]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/dev/nontopic')
# Index nfcorpus
indexer = pt.IterDictIndexer('./indices/nfcorpus')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['url', 'title', 'abstract'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
0 | Marginally relevant, based on topic containment. |
1 | A link exists from the query to another query that directly links to the document. |
2 | A direct link from the query to the document the cited sources section of a page. |
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/dev/nontopic")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export nfcorpus/dev/nontopic qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/dev/nontopic')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{Boteva2016Nfcorpus, title="A Full-Text Learning to Rank Dataset for Medical Information Retrieval", author = "Vera Boteva and Demian Gholipour and Artem Sokolov and Stefan Riezler", booktitle = "Proceedings of the European Conference on Information Retrieval ({ECIR})", location = "Padova, Italy", publisher = "Springer", year = 2016 }Official dev set, filtered to only include queries from video pages.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/dev/video")
for query in dataset.queries_iter():
query # namedtuple<query_id, title, desc>
You can find more details about the Python API here.
ir_datasets export nfcorpus/dev/video queries
[query_id] [title] [desc]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/dev/video')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('title'))
You can find more details about PyTerrier retrieval here.
Language: en
Note: Uses docs from nfcorpus
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/dev/video")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, title, abstract>
You can find more details about the Python API here.
ir_datasets export nfcorpus/dev/video docs
[doc_id] [url] [title] [abstract]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/dev/video')
# Index nfcorpus
indexer = pt.IterDictIndexer('./indices/nfcorpus')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['url', 'title', 'abstract'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
0 | Marginally relevant, based on topic containment. |
1 | A link exists from the query to another query that directly links to the document. |
2 | A direct link from the query to the document the cited sources section of a page. |
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/dev/video")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export nfcorpus/dev/video qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/dev/video')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics('title'),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{Boteva2016Nfcorpus, title="A Full-Text Learning to Rank Dataset for Medical Information Retrieval", author = "Vera Boteva and Demian Gholipour and Artem Sokolov and Stefan Riezler", booktitle = "Proceedings of the European Conference on Information Retrieval ({ECIR})", location = "Padova, Italy", publisher = "Springer", year = 2016 }Official test set. Queries include both title and combinted "all" text field (titles, descriptions, topics, transcripts and comments)
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/test")
for query in dataset.queries_iter():
query # namedtuple<query_id, title, all>
You can find more details about the Python API here.
ir_datasets export nfcorpus/test queries
[query_id] [title] [all]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/test')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('title'))
You can find more details about PyTerrier retrieval here.
Language: en
Note: Uses docs from nfcorpus
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/test")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, title, abstract>
You can find more details about the Python API here.
ir_datasets export nfcorpus/test docs
[doc_id] [url] [title] [abstract]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/test')
# Index nfcorpus
indexer = pt.IterDictIndexer('./indices/nfcorpus')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['url', 'title', 'abstract'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
0 | Marginally relevant, based on topic containment. |
1 | A link exists from the query to another query that directly links to the document. |
2 | A direct link from the query to the document the cited sources section of a page. |
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/test")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export nfcorpus/test qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/test')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics('title'),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{Boteva2016Nfcorpus, title="A Full-Text Learning to Rank Dataset for Medical Information Retrieval", author = "Vera Boteva and Demian Gholipour and Artem Sokolov and Stefan Riezler", booktitle = "Proceedings of the European Conference on Information Retrieval ({ECIR})", location = "Padova, Italy", publisher = "Springer", year = 2016 }Official test set, filtered to exclude queries from topic pages.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/test/nontopic")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export nfcorpus/test/nontopic queries
[query_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/test/nontopic')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
Language: en
Note: Uses docs from nfcorpus
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/test/nontopic")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, title, abstract>
You can find more details about the Python API here.
ir_datasets export nfcorpus/test/nontopic docs
[doc_id] [url] [title] [abstract]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/test/nontopic')
# Index nfcorpus
indexer = pt.IterDictIndexer('./indices/nfcorpus')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['url', 'title', 'abstract'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
0 | Marginally relevant, based on topic containment. |
1 | A link exists from the query to another query that directly links to the document. |
2 | A direct link from the query to the document the cited sources section of a page. |
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/test/nontopic")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export nfcorpus/test/nontopic qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/test/nontopic')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{Boteva2016Nfcorpus, title="A Full-Text Learning to Rank Dataset for Medical Information Retrieval", author = "Vera Boteva and Demian Gholipour and Artem Sokolov and Stefan Riezler", booktitle = "Proceedings of the European Conference on Information Retrieval ({ECIR})", location = "Padova, Italy", publisher = "Springer", year = 2016 }Official test set, filtered to only include queries from video pages.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/test/video")
for query in dataset.queries_iter():
query # namedtuple<query_id, title, desc>
You can find more details about the Python API here.
ir_datasets export nfcorpus/test/video queries
[query_id] [title] [desc]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/test/video')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('title'))
You can find more details about PyTerrier retrieval here.
Language: en
Note: Uses docs from nfcorpus
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/test/video")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, title, abstract>
You can find more details about the Python API here.
ir_datasets export nfcorpus/test/video docs
[doc_id] [url] [title] [abstract]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/test/video')
# Index nfcorpus
indexer = pt.IterDictIndexer('./indices/nfcorpus')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['url', 'title', 'abstract'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
0 | Marginally relevant, based on topic containment. |
1 | A link exists from the query to another query that directly links to the document. |
2 | A direct link from the query to the document the cited sources section of a page. |
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/test/video")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export nfcorpus/test/video qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/test/video')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics('title'),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{Boteva2016Nfcorpus, title="A Full-Text Learning to Rank Dataset for Medical Information Retrieval", author = "Vera Boteva and Demian Gholipour and Artem Sokolov and Stefan Riezler", booktitle = "Proceedings of the European Conference on Information Retrieval ({ECIR})", location = "Padova, Italy", publisher = "Springer", year = 2016 }Official train set. Queries include both title and combinted "all" text field (titles, descriptions, topics, transcripts and comments)
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/train")
for query in dataset.queries_iter():
query # namedtuple<query_id, title, all>
You can find more details about the Python API here.
ir_datasets export nfcorpus/train queries
[query_id] [title] [all]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/train')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('title'))
You can find more details about PyTerrier retrieval here.
Language: en
Note: Uses docs from nfcorpus
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/train")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, title, abstract>
You can find more details about the Python API here.
ir_datasets export nfcorpus/train docs
[doc_id] [url] [title] [abstract]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/train')
# Index nfcorpus
indexer = pt.IterDictIndexer('./indices/nfcorpus')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['url', 'title', 'abstract'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
0 | Marginally relevant, based on topic containment. |
1 | A link exists from the query to another query that directly links to the document. |
2 | A direct link from the query to the document the cited sources section of a page. |
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/train")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export nfcorpus/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/train')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics('title'),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{Boteva2016Nfcorpus, title="A Full-Text Learning to Rank Dataset for Medical Information Retrieval", author = "Vera Boteva and Demian Gholipour and Artem Sokolov and Stefan Riezler", booktitle = "Proceedings of the European Conference on Information Retrieval ({ECIR})", location = "Padova, Italy", publisher = "Springer", year = 2016 }Official train set, filtered to exclude queries from topic pages.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/train/nontopic")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export nfcorpus/train/nontopic queries
[query_id] [text]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/train/nontopic')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics())
You can find more details about PyTerrier retrieval here.
Language: en
Note: Uses docs from nfcorpus
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/train/nontopic")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, title, abstract>
You can find more details about the Python API here.
ir_datasets export nfcorpus/train/nontopic docs
[doc_id] [url] [title] [abstract]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/train/nontopic')
# Index nfcorpus
indexer = pt.IterDictIndexer('./indices/nfcorpus')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['url', 'title', 'abstract'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
0 | Marginally relevant, based on topic containment. |
1 | A link exists from the query to another query that directly links to the document. |
2 | A direct link from the query to the document the cited sources section of a page. |
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/train/nontopic")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export nfcorpus/train/nontopic qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/train/nontopic')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics(),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{Boteva2016Nfcorpus, title="A Full-Text Learning to Rank Dataset for Medical Information Retrieval", author = "Vera Boteva and Demian Gholipour and Artem Sokolov and Stefan Riezler", booktitle = "Proceedings of the European Conference on Information Retrieval ({ECIR})", location = "Padova, Italy", publisher = "Springer", year = 2016 }Official train set, filtered to only include queries from video pages.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/train/video")
for query in dataset.queries_iter():
query # namedtuple<query_id, title, desc>
You can find more details about the Python API here.
ir_datasets export nfcorpus/train/video queries
[query_id] [title] [desc]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/train/video')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('title'))
You can find more details about PyTerrier retrieval here.
Language: en
Note: Uses docs from nfcorpus
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/train/video")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, title, abstract>
You can find more details about the Python API here.
ir_datasets export nfcorpus/train/video docs
[doc_id] [url] [title] [abstract]
...
You can find more details about the CLI here.
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/train/video')
# Index nfcorpus
indexer = pt.IterDictIndexer('./indices/nfcorpus')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['url', 'title', 'abstract'])
You can find more details about PyTerrier indexing here.
Relevance levels
Rel. | Definition |
---|---|
0 | Marginally relevant, based on topic containment. |
1 | A link exists from the query to another query that directly links to the document. |
2 | A direct link from the query to the document the cited sources section of a page. |
Examples:
import ir_datasets
dataset = ir_datasets.load("nfcorpus/train/video")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export nfcorpus/train/video qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:nfcorpus/train/video')
index_ref = pt.IndexRef.of('./indices/nfcorpus') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
[pipeline],
dataset.get_topics('title'),
dataset.get_qrels(),
[MAP, nDCG@20]
)
You can find more details about PyTerrier experiments here.
Bibtex:
@inproceedings{Boteva2016Nfcorpus, title="A Full-Text Learning to Rank Dataset for Medical Information Retrieval", author = "Vera Boteva and Demian Gholipour and Artem Sokolov and Stefan Riezler", booktitle = "Proceedings of the European Conference on Information Retrieval ({ECIR})", location = "Padova, Italy", publisher = "Springer", year = 2016 }