ir_datasets
: CodeSearchNetA benchmark for semantic code search. Uses
Language: multiple/other/unknown
Examples:
import ir_datasets
dataset = ir_datasets.load("codesearchnet")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, repo, path, func_name, code, language>
You can find more details about the Python API here.
ir_datasets export codesearchnet docs
[doc_id] [repo] [path] [func_name] [code] [language]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Husain2019CodeSearchNet, title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search}, author={Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis Allamanis and Marc Brockschmidt}, journal={ArXiv}, year={2019} }Official challenge set, with keyword queries and deep relevance assessments.
Language: multiple/other/unknown
Examples:
import ir_datasets
dataset = ir_datasets.load("codesearchnet/challenge")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export codesearchnet/challenge queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Language: multiple/other/unknown
Examples:
import ir_datasets
dataset = ir_datasets.load("codesearchnet/challenge")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, repo, path, func_name, code, language>
You can find more details about the Python API here.
ir_datasets export codesearchnet/challenge docs
[doc_id] [repo] [path] [func_name] [code] [language]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition |
---|---|
0 | Irrelevant |
1 | Weak Match |
2 | String Match |
3 | Exact Match |
Examples:
import ir_datasets
dataset = ir_datasets.load("codesearchnet/challenge")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, note>
You can find more details about the Python API here.
ir_datasets export codesearchnet/challenge qrels --format tsv
[query_id] [doc_id] [relevance] [note]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Husain2019CodeSearchNet, title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search}, author={Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis Allamanis and Marc Brockschmidt}, journal={ArXiv}, year={2019} }Official test set, using queries inferred from docstrings.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("codesearchnet/test")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export codesearchnet/test queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Language: multiple/other/unknown
Examples:
import ir_datasets
dataset = ir_datasets.load("codesearchnet/test")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, repo, path, func_name, code, language>
You can find more details about the Python API here.
ir_datasets export codesearchnet/test docs
[doc_id] [repo] [path] [func_name] [code] [language]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition |
---|---|
1 | Matches docstring |
Examples:
import ir_datasets
dataset = ir_datasets.load("codesearchnet/test")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export codesearchnet/test qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Husain2019CodeSearchNet, title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search}, author={Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis Allamanis and Marc Brockschmidt}, journal={ArXiv}, year={2019} }Official train set, using queries inferred from docstrings.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("codesearchnet/train")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export codesearchnet/train queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Language: multiple/other/unknown
Examples:
import ir_datasets
dataset = ir_datasets.load("codesearchnet/train")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, repo, path, func_name, code, language>
You can find more details about the Python API here.
ir_datasets export codesearchnet/train docs
[doc_id] [repo] [path] [func_name] [code] [language]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition |
---|---|
1 | Matches docstring |
Examples:
import ir_datasets
dataset = ir_datasets.load("codesearchnet/train")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export codesearchnet/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Husain2019CodeSearchNet, title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search}, author={Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis Allamanis and Marc Brockschmidt}, journal={ArXiv}, year={2019} }Official validation set, using queries inferred from docstrings.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("codesearchnet/valid")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export codesearchnet/valid queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
Language: multiple/other/unknown
Examples:
import ir_datasets
dataset = ir_datasets.load("codesearchnet/valid")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, repo, path, func_name, code, language>
You can find more details about the Python API here.
ir_datasets export codesearchnet/valid docs
[doc_id] [repo] [path] [func_name] [code] [language]
...
You can find more details about the CLI here.
No example available for PyTerrier
Relevance levels
Rel. | Definition |
---|---|
1 | Matches docstring |
Examples:
import ir_datasets
dataset = ir_datasets.load("codesearchnet/valid")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export codesearchnet/valid qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
Bibtex:
@article{Husain2019CodeSearchNet, title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search}, author={Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis Allamanis and Marc Brockschmidt}, journal={ArXiv}, year={2019} }