← home
Github: datasets/car.py

ir_datasets: TREC CAR

Index
  1. car
  2. car/v1.5
  3. car/v1.5/test200
  4. car/v1.5/train/fold0
  5. car/v1.5/train/fold1
  6. car/v1.5/train/fold2
  7. car/v1.5/train/fold3
  8. car/v1.5/train/fold4
  9. car/v1.5/trec-y1
  10. car/v1.5/trec-y1/auto
  11. car/v1.5/trec-y1/manual

"car"

An ad-hoc passage retrieval collection, constructed from Wikipedia and used as the basis of the TREC Complex Answer Retrieval (CAR) task.


"car/v1.5"

Version 1.5 of the TREC dataset. This version is used for year 1 (2017) of the TREC CAR shared task.

docs

Language: en

Document type:
GenericDoc: (namedtuple)
  1. doc_id: str
  2. text: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, text>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5 docs
[doc_id]    [text]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5')
# Index car/v1.5
indexer = pt.IterDictIndexer('./indices/car_v1.5')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])

You can find more details about PyTerrier indexing here.

Citation
bibtex: @article{Dietz2017, title={{TREC CAR}: A Data Set for Complex Answer Retrieval}, author={Laura Dietz and Ben Gamari}, year={2017}, note={Version 1.5}, url={http://trec-car.cs.unh.edu} }

"car/v1.5/test200"

Un-official test set consisting of manually-selected articles. Sometimes used as a validation set.

queries

Language: en

Query type:
CarQuery: (namedtuple)
  1. query_id: str
  2. text: str
  3. title: str
  4. headings: Tuple[str, ...]

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/test200")
for query in dataset.queries_iter():
    query # namedtuple<query_id, text, title, headings>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/test200 queries
[query_id]    [text]    [title]    [headings]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/test200')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('text'))

You can find more details about PyTerrier retrieval here.

docs

Language: en

Note: Uses docs from car/v1.5

Document type:
GenericDoc: (namedtuple)
  1. doc_id: str
  2. text: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/test200")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, text>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/test200 docs
[doc_id]    [text]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/test200')
# Index car/v1.5
indexer = pt.IterDictIndexer('./indices/car_v1.5')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])

You can find more details about PyTerrier indexing here.

qrels
Query relevance judgment type:
TrecQrel: (namedtuple)
  1. query_id: str
  2. doc_id: str
  3. relevance: int
  4. iteration: str

Relevance levels

Rel.Definition
1Paragraph appears under heading

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/test200")
for qrel in dataset.qrels_iter():
    qrel # namedtuple<query_id, doc_id, relevance, iteration>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/test200 qrels --format tsv
[query_id]    [doc_id]    [relevance]    [iteration]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/test200')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
    [pipeline],
    dataset.get_topics('text'),
    dataset.get_qrels(),
    [MAP, nDCG@20]
)

You can find more details about PyTerrier experiments here.

Citation
bibtex: @inproceedings{nanni2017benchmark, title={Benchmark for complex answer retrieval}, author={Nanni, Federico and Mitra, Bhaskar and Magnusson, Matt and Dietz, Laura}, booktitle={ICTIR}, year={2017} }

"car/v1.5/train/fold0"

Fold 0 of the official large training set for TREC CAR 2017. Relevance assumed from hierarchical structure of pages (i.e., paragraphs under a header are assumed relevant.)

queries

Language: en

Query type:
CarQuery: (namedtuple)
  1. query_id: str
  2. text: str
  3. title: str
  4. headings: Tuple[str, ...]

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold0")
for query in dataset.queries_iter():
    query # namedtuple<query_id, text, title, headings>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold0 queries
[query_id]    [text]    [title]    [headings]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold0')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('text'))

You can find more details about PyTerrier retrieval here.

docs

Language: en

Note: Uses docs from car/v1.5

Document type:
GenericDoc: (namedtuple)
  1. doc_id: str
  2. text: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold0")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, text>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold0 docs
[doc_id]    [text]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold0')
# Index car/v1.5
indexer = pt.IterDictIndexer('./indices/car_v1.5')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])

You can find more details about PyTerrier indexing here.

qrels
Query relevance judgment type:
TrecQrel: (namedtuple)
  1. query_id: str
  2. doc_id: str
  3. relevance: int
  4. iteration: str

Relevance levels

Rel.Definition
1Paragraph appears under heading

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold0")
for qrel in dataset.qrels_iter():
    qrel # namedtuple<query_id, doc_id, relevance, iteration>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold0 qrels --format tsv
[query_id]    [doc_id]    [relevance]    [iteration]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold0')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
    [pipeline],
    dataset.get_topics('text'),
    dataset.get_qrels(),
    [MAP, nDCG@20]
)

You can find more details about PyTerrier experiments here.


"car/v1.5/train/fold1"

Fold 1 of the official large training set for TREC CAR 2017. Relevance assumed from hierarchical structure of pages (i.e., paragraphs under a header are assumed relevant.)

queries

Language: en

Query type:
CarQuery: (namedtuple)
  1. query_id: str
  2. text: str
  3. title: str
  4. headings: Tuple[str, ...]

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold1")
for query in dataset.queries_iter():
    query # namedtuple<query_id, text, title, headings>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold1 queries
[query_id]    [text]    [title]    [headings]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold1')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('text'))

You can find more details about PyTerrier retrieval here.

docs

Language: en

Note: Uses docs from car/v1.5

Document type:
GenericDoc: (namedtuple)
  1. doc_id: str
  2. text: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold1")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, text>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold1 docs
[doc_id]    [text]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold1')
# Index car/v1.5
indexer = pt.IterDictIndexer('./indices/car_v1.5')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])

You can find more details about PyTerrier indexing here.

qrels
Query relevance judgment type:
TrecQrel: (namedtuple)
  1. query_id: str
  2. doc_id: str
  3. relevance: int
  4. iteration: str

Relevance levels

Rel.Definition
1Paragraph appears under heading

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold1")
for qrel in dataset.qrels_iter():
    qrel # namedtuple<query_id, doc_id, relevance, iteration>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold1 qrels --format tsv
[query_id]    [doc_id]    [relevance]    [iteration]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold1')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
    [pipeline],
    dataset.get_topics('text'),
    dataset.get_qrels(),
    [MAP, nDCG@20]
)

You can find more details about PyTerrier experiments here.


"car/v1.5/train/fold2"

Fold 2 of the official large training set for TREC CAR 2017. Relevance assumed from hierarchical structure of pages (i.e., paragraphs under a header are assumed relevant.)

queries

Language: en

Query type:
CarQuery: (namedtuple)
  1. query_id: str
  2. text: str
  3. title: str
  4. headings: Tuple[str, ...]

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold2")
for query in dataset.queries_iter():
    query # namedtuple<query_id, text, title, headings>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold2 queries
[query_id]    [text]    [title]    [headings]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold2')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('text'))

You can find more details about PyTerrier retrieval here.

docs

Language: en

Note: Uses docs from car/v1.5

Document type:
GenericDoc: (namedtuple)
  1. doc_id: str
  2. text: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold2")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, text>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold2 docs
[doc_id]    [text]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold2')
# Index car/v1.5
indexer = pt.IterDictIndexer('./indices/car_v1.5')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])

You can find more details about PyTerrier indexing here.

qrels
Query relevance judgment type:
TrecQrel: (namedtuple)
  1. query_id: str
  2. doc_id: str
  3. relevance: int
  4. iteration: str

Relevance levels

Rel.Definition
1Paragraph appears under heading

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold2")
for qrel in dataset.qrels_iter():
    qrel # namedtuple<query_id, doc_id, relevance, iteration>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold2 qrels --format tsv
[query_id]    [doc_id]    [relevance]    [iteration]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold2')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
    [pipeline],
    dataset.get_topics('text'),
    dataset.get_qrels(),
    [MAP, nDCG@20]
)

You can find more details about PyTerrier experiments here.


"car/v1.5/train/fold3"

Fold 3 of the official large training set for TREC CAR 2017. Relevance assumed from hierarchical structure of pages (i.e., paragraphs under a header are assumed relevant.)

queries

Language: en

Query type:
CarQuery: (namedtuple)
  1. query_id: str
  2. text: str
  3. title: str
  4. headings: Tuple[str, ...]

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold3")
for query in dataset.queries_iter():
    query # namedtuple<query_id, text, title, headings>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold3 queries
[query_id]    [text]    [title]    [headings]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold3')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('text'))

You can find more details about PyTerrier retrieval here.

docs

Language: en

Note: Uses docs from car/v1.5

Document type:
GenericDoc: (namedtuple)
  1. doc_id: str
  2. text: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold3")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, text>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold3 docs
[doc_id]    [text]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold3')
# Index car/v1.5
indexer = pt.IterDictIndexer('./indices/car_v1.5')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])

You can find more details about PyTerrier indexing here.

qrels
Query relevance judgment type:
TrecQrel: (namedtuple)
  1. query_id: str
  2. doc_id: str
  3. relevance: int
  4. iteration: str

Relevance levels

Rel.Definition
1Paragraph appears under heading

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold3")
for qrel in dataset.qrels_iter():
    qrel # namedtuple<query_id, doc_id, relevance, iteration>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold3 qrels --format tsv
[query_id]    [doc_id]    [relevance]    [iteration]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold3')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
    [pipeline],
    dataset.get_topics('text'),
    dataset.get_qrels(),
    [MAP, nDCG@20]
)

You can find more details about PyTerrier experiments here.


"car/v1.5/train/fold4"

Fold 4 of the official large training set for TREC CAR 2017. Relevance assumed from hierarchical structure of pages (i.e., paragraphs under a header are assumed relevant.)

queries

Language: en

Query type:
CarQuery: (namedtuple)
  1. query_id: str
  2. text: str
  3. title: str
  4. headings: Tuple[str, ...]

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold4")
for query in dataset.queries_iter():
    query # namedtuple<query_id, text, title, headings>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold4 queries
[query_id]    [text]    [title]    [headings]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold4')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('text'))

You can find more details about PyTerrier retrieval here.

docs

Language: en

Note: Uses docs from car/v1.5

Document type:
GenericDoc: (namedtuple)
  1. doc_id: str
  2. text: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold4")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, text>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold4 docs
[doc_id]    [text]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold4')
# Index car/v1.5
indexer = pt.IterDictIndexer('./indices/car_v1.5')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])

You can find more details about PyTerrier indexing here.

qrels
Query relevance judgment type:
TrecQrel: (namedtuple)
  1. query_id: str
  2. doc_id: str
  3. relevance: int
  4. iteration: str

Relevance levels

Rel.Definition
1Paragraph appears under heading

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/train/fold4")
for qrel in dataset.qrels_iter():
    qrel # namedtuple<query_id, doc_id, relevance, iteration>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/train/fold4 qrels --format tsv
[query_id]    [doc_id]    [relevance]    [iteration]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/train/fold4')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
    [pipeline],
    dataset.get_topics('text'),
    dataset.get_qrels(),
    [MAP, nDCG@20]
)

You can find more details about PyTerrier experiments here.


"car/v1.5/trec-y1"

Official test set of TREC CAR 2017 (year 1).

queries

Language: en

Query type:
CarQuery: (namedtuple)
  1. query_id: str
  2. text: str
  3. title: str
  4. headings: Tuple[str, ...]

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/trec-y1")
for query in dataset.queries_iter():
    query # namedtuple<query_id, text, title, headings>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/trec-y1 queries
[query_id]    [text]    [title]    [headings]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/trec-y1')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('text'))

You can find more details about PyTerrier retrieval here.

docs

Language: en

Note: Uses docs from car/v1.5

Document type:
GenericDoc: (namedtuple)
  1. doc_id: str
  2. text: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/trec-y1")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, text>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/trec-y1 docs
[doc_id]    [text]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/trec-y1')
# Index car/v1.5
indexer = pt.IterDictIndexer('./indices/car_v1.5')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])

You can find more details about PyTerrier indexing here.

Citation
bibtex: @inproceedings{dietz2017trec, title={TREC Complex Answer Retrieval Overview.}, author={Dietz, Laura and Verma, Manisha and Radlinski, Filip and Craswell, Nick}, booktitle={TREC}, year={2017} }

"car/v1.5/trec-y1/auto"

Official test set of TREC CAR 2017 (year 1), using automatic relevance judgments (assumed from hierarchical structure of pages, i.e., paragraphs under a header are assumed relevant.)

queries

Language: en

Query type:
CarQuery: (namedtuple)
  1. query_id: str
  2. text: str
  3. title: str
  4. headings: Tuple[str, ...]

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/trec-y1/auto")
for query in dataset.queries_iter():
    query # namedtuple<query_id, text, title, headings>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/trec-y1/auto queries
[query_id]    [text]    [title]    [headings]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/trec-y1/auto')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('text'))

You can find more details about PyTerrier retrieval here.

docs

Language: en

Note: Uses docs from car/v1.5

Document type:
GenericDoc: (namedtuple)
  1. doc_id: str
  2. text: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/trec-y1/auto")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, text>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/trec-y1/auto docs
[doc_id]    [text]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/trec-y1/auto')
# Index car/v1.5
indexer = pt.IterDictIndexer('./indices/car_v1.5')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])

You can find more details about PyTerrier indexing here.

qrels
Query relevance judgment type:
TrecQrel: (namedtuple)
  1. query_id: str
  2. doc_id: str
  3. relevance: int
  4. iteration: str

Relevance levels

Rel.Definition
1Paragraph appears under heading

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/trec-y1/auto")
for qrel in dataset.qrels_iter():
    qrel # namedtuple<query_id, doc_id, relevance, iteration>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/trec-y1/auto qrels --format tsv
[query_id]    [doc_id]    [relevance]    [iteration]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/trec-y1/auto')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
    [pipeline],
    dataset.get_topics('text'),
    dataset.get_qrels(),
    [MAP, nDCG@20]
)

You can find more details about PyTerrier experiments here.


"car/v1.5/trec-y1/manual"

Official test set of TREC CAR 2017 (year 1), using manual graded relevance judgments.

queries

Language: en

Query type:
CarQuery: (namedtuple)
  1. query_id: str
  2. text: str
  3. title: str
  4. headings: Tuple[str, ...]

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/trec-y1/manual")
for query in dataset.queries_iter():
    query # namedtuple<query_id, text, title, headings>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/trec-y1/manual queries
[query_id]    [text]    [title]    [headings]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/trec-y1/manual')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pipeline(dataset.get_topics('text'))

You can find more details about PyTerrier retrieval here.

docs

Language: en

Note: Uses docs from car/v1.5

Document type:
GenericDoc: (namedtuple)
  1. doc_id: str
  2. text: str

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/trec-y1/manual")
for doc in dataset.docs_iter():
    doc # namedtuple<doc_id, text>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/trec-y1/manual docs
[doc_id]    [text]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/trec-y1/manual')
# Index car/v1.5
indexer = pt.IterDictIndexer('./indices/car_v1.5')
index_ref = indexer.index(dataset.get_corpus_iter(), fields=['text'])

You can find more details about PyTerrier indexing here.

qrels
Query relevance judgment type:
TrecQrel: (namedtuple)
  1. query_id: str
  2. doc_id: str
  3. relevance: int
  4. iteration: str

Relevance levels

Rel.Definition
-2Trash
-1NO, non-relevant
0Non-relevant, but roughly on TOPIC
1CAN be mentioned
2SHOULD be mentioned
3MUST be mentioned

Examples:

Python API
import ir_datasets
dataset = ir_datasets.load("car/v1.5/trec-y1/manual")
for qrel in dataset.qrels_iter():
    qrel # namedtuple<query_id, doc_id, relevance, iteration>

You can find more details about the Python API here.

CLI
ir_datasets export car/v1.5/trec-y1/manual qrels --format tsv
[query_id]    [doc_id]    [relevance]    [iteration]
...

You can find more details about the CLI here.

PyTerrier
import pyterrier as pt
from pyterrier.measures import *
pt.init()
dataset = pt.get_dataset('irds:car/v1.5/trec-y1/manual')
index_ref = pt.IndexRef.of('./indices/car_v1.5') # assumes you have already built an index
pipeline = pt.BatchRetrieve(index_ref, wmodel='BM25')
# (optionally other pipeline components)
pt.Experiment(
    [pipeline],
    dataset.get_topics('text'),
    dataset.get_qrels(),
    [MAP, nDCG@20]
)

You can find more details about PyTerrier experiments here.