ir_datasets
: TREC MandarinTo use this dataset, you need a copy of the source corpus, provided by the the Linguistic Data Consortium. The specific resource needed is LDC2000T52.
Many organizations already have a subscription to the LDC, so access to the collection can be as easy as confirming the data usage agreement and downloading the corpus. Check with your library for access details.
The source file is: LDC2000T52.tgz.
ir_datasets expects this file to be copied/linked as ~/.ir_datasets/trec-mandarin/corpus.tgz.
A collection of news articles in Mandarin in Simplified Chinese, used for multi-lingual evaluation in TREC 5 and TREC 6.
Document collection from LDC2000T52.
Language: zh
Examples:
import ir_datasets
dataset = ir_datasets.load("trec-mandarin")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text, marked_up_doc>
You can find more details about the Python API here.
ir_datasets export trec-mandarin docs
[doc_id] [text] [marked_up_doc]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.trec-mandarin')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Bibtex:
@misc{Rogers2000Mandarin, title={TREC Mandarin LDC2000T52}, author={Rogers, Willie}, year={2000}, url={https://catalog.ldc.upenn.edu/LDC2000T52}, publisher={Linguistic Data Consortium} }{ "docs": { "count": 164789, "fields": { "doc_id": { "max_len": 22, "common_prefix": "" } } } }
Mandarin Chinese benchmark from TREC 5.
Language: multiple/other/unknown
Examples:
import ir_datasets
dataset = ir_datasets.load("trec-mandarin/trec5")
for query in dataset.queries_iter():
query # namedtuple<query_id, title_en, title_zh, description_en, description_zh, narrative_en, narrative_zh>
You can find more details about the Python API here.
ir_datasets export trec-mandarin/trec5 queries
[query_id] [title_en] [title_zh] [description_en] [description_zh] [narrative_en] [narrative_zh]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.trec-mandarin.trec5.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from trec-mandarin
Language: zh
Examples:
import ir_datasets
dataset = ir_datasets.load("trec-mandarin/trec5")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text, marked_up_doc>
You can find more details about the Python API here.
ir_datasets export trec-mandarin/trec5 docs
[doc_id] [text] [marked_up_doc]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.trec-mandarin.trec5')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | not relevant | 13K | 86.0% |
1 | relevant | 2.2K | 14.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("trec-mandarin/trec5")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export trec-mandarin/trec5 qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.trec-mandarin.trec5.qrels') # AdhocAssessments
for topic_qrels in qrels.iter():
print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@inproceedings{Harman1997Chinese, title={Spanish and Chinese Document Retrieval in TREC-5}, author={Alan Smeaton and Ross Wilkinson}, booktitle={TREC}, year={1996} } @misc{Rogers2000Mandarin, title={TREC Mandarin LDC2000T52}, author={Rogers, Willie}, year={2000}, url={https://catalog.ldc.upenn.edu/LDC2000T52}, publisher={Linguistic Data Consortium} }{ "docs": { "count": 164789, "fields": { "doc_id": { "max_len": 22, "common_prefix": "" } } }, "queries": { "count": 28 }, "qrels": { "count": 15588, "fields": { "relevance": { "counts_by_value": { "0": 13406, "1": 2182 } } } } }
Mandarin Chinese benchmark from TREC 6.
Language: multiple/other/unknown
Examples:
import ir_datasets
dataset = ir_datasets.load("trec-mandarin/trec6")
for query in dataset.queries_iter():
query # namedtuple<query_id, title_en, title_zh, description_en, description_zh, narrative_en, narrative_zh>
You can find more details about the Python API here.
ir_datasets export trec-mandarin/trec6 queries
[query_id] [title_en] [title_zh] [description_en] [description_zh] [narrative_en] [narrative_zh]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.trec-mandarin.trec6.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from trec-mandarin
Language: zh
Examples:
import ir_datasets
dataset = ir_datasets.load("trec-mandarin/trec6")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, text, marked_up_doc>
You can find more details about the Python API here.
ir_datasets export trec-mandarin/trec6 docs
[doc_id] [text] [marked_up_doc]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.trec-mandarin.trec6')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | not relevant | 6.3K | 68.0% |
1 | relevant | 3.0K | 32.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("trec-mandarin/trec6")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export trec-mandarin/trec6 qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.trec-mandarin.trec6.qrels') # AdhocAssessments
for topic_qrels in qrels.iter():
print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@inproceedings{Wilkinson1998Chinese, title={Chinese Document Retrieval at TREC-6}, author={Ross Wilkinson}, booktitle={TREC}, year={1997} } @misc{Rogers2000Mandarin, title={TREC Mandarin LDC2000T52}, author={Rogers, Willie}, year={2000}, url={https://catalog.ldc.upenn.edu/LDC2000T52}, publisher={Linguistic Data Consortium} }{ "docs": { "count": 164789, "fields": { "doc_id": { "max_len": 22, "common_prefix": "" } } }, "queries": { "count": 26 }, "qrels": { "count": 9236, "fields": { "relevance": { "counts_by_value": { "1": 2958, "0": 6278 } } } } }