ir_datasets
: GOV2To use this dataset, you need a copy of GOV2, provided by the University of Glasgow.
Your organization may already have a copy. If this is the case, you may only need to complete a new "Individual Argeement". Otherwise, your organization will need to file the "Organizational agreement" and pay a fee to UoG to get a copy. The data are provided as hard drives that are shipped to you.
Once you have the data, ir_datasets will need the GOV2_data directory.
ir_datasets expects the above directory to be copied/linked under ~/.ir_datasets/gov/corpus.
GOV2 web document collection. Used for the TREC Terabyte Track.
The dataset is obtained for a fee from UoG, and is shipped as a hard drive. More information is provided here.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2 docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } } }
TREC 2007 Million Query track.
Language: multiple/other/unknown
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-mq-2007")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export gov2/trec-mq-2007 queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.gov2.trec-mq-2007.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from gov2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-mq-2007")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2/trec-mq-2007 docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2.trec-mq-2007')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Not Relevant | 54K | 74.4% |
1 | Relevant | 15K | 20.1% |
2 | Highly Relevant | 4.0K | 5.5% |
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-mq-2007")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, method, iprob>
You can find more details about the Python API here.
ir_datasets export gov2/trec-mq-2007 qrels --format tsv
[query_id] [doc_id] [relevance] [method] [iprob]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.gov2.trec-mq-2007.qrels') # AdhocAssessments
for topic_qrels in qrels.iter():
print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@inproceedings{Allen2007MQ, title={Million Query Track 2007 Overview}, author={James Allan and Ben Carterette and Javed A. Aslam and Virgil Pavlu and Blagovest Dachev and Evangelos Kanoulas}, booktitle={TREC}, year={2007} }{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } }, "queries": { "count": 10000 }, "qrels": { "count": 73015, "fields": { "relevance": { "counts_by_value": { "0": 54333, "1": 14689, "2": 3993 } } } } }
TREC 2008 Million Query track.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-mq-2008")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export gov2/trec-mq-2008 queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.gov2.trec-mq-2008.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from gov2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-mq-2008")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2/trec-mq-2008 docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2.trec-mq-2008')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Not Relevant | 12K | 80.7% |
1 | Relevant | 2.9K | 19.3% |
2 | Highly Relevant | 0 | 0.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-mq-2008")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, method, iprob>
You can find more details about the Python API here.
ir_datasets export gov2/trec-mq-2008 qrels --format tsv
[query_id] [doc_id] [relevance] [method] [iprob]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.gov2.trec-mq-2008.qrels') # AdhocAssessments
for topic_qrels in qrels.iter():
print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@inproceedings{Allen2008MQ, title={Million Query Track 2008 Overview}, author={James Allan and Javed A. Aslam and Ben Carterette and Virgil Pavlu and Evangelos Kanoulas}, booktitle={TREC}, year={2008} }{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } }, "queries": { "count": 10000 }, "qrels": { "count": 15211, "fields": { "relevance": { "counts_by_value": { "0": 12279, "1": 2932 } } } } }
The TREC Terabyte Track 2004 ad-hoc ranking benchmark. Contains 50 queries with deep relevance judgments.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2004")
for query in dataset.queries_iter():
query # namedtuple<query_id, title, description, narrative>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2004 queries
[query_id] [title] [description] [narrative]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.gov2.trec-tb-2004.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from gov2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2004")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2004 docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2.trec-tb-2004')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Not Relevant | 47K | 81.7% |
1 | Relevant | 9.3K | 16.1% |
2 | Highly Relevant | 1.3K | 2.2% |
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2004")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2004 qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.gov2.trec-tb-2004.qrels') # AdhocAssessments
for topic_qrels in qrels.iter():
print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@inproceedings{Clarke2004TrecTerabyte, title={Overview of the TREC 2004 Terabyte Track}, author={Charles Clarke and Nick Craswell and Ian Soboroff}, booktitle={TREC}, year={2004} }{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } }, "queries": { "count": 50 }, "qrels": { "count": 58077, "fields": { "relevance": { "counts_by_value": { "0": 47460, "1": 9327, "2": 1290 } } } } }
The TREC Terabyte Track 2005 ad-hoc ranking benchmark. Contains 50 queries with deep relevance judgments.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2005")
for query in dataset.queries_iter():
query # namedtuple<query_id, title, description, narrative>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2005 queries
[query_id] [title] [description] [narrative]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.gov2.trec-tb-2005.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from gov2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2005")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2005 docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2.trec-tb-2005')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Not Relevant | 35K | 77.0% |
1 | Relevant | 7.8K | 17.2% |
2 | Highly Relevant | 2.6K | 5.8% |
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2005")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2005 qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.gov2.trec-tb-2005.qrels') # AdhocAssessments
for topic_qrels in qrels.iter():
print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@inproceedings{Clarke2005TrecTerabyte, title={The TREC 2005 Terabyte Track}, author={Charles L. A. Clark and Falk Scholer and Ian Soboroff}, booktitle={TREC}, year={2005} }{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } }, "queries": { "count": 50 }, "qrels": { "count": 45291, "fields": { "relevance": { "counts_by_value": { "0": 34884, "1": 7772, "2": 2635 } } } } }
The TREC Terabyte Track 2005 efficiency ranking benchmark. Contains 50,000 queries from a search engine, including the 50 topics from gov2/trec-tb-2005. Only the 50 topics have judgments.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2005/efficiency")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2005/efficiency queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.gov2.trec-tb-2005.efficiency.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from gov2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2005/efficiency")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2005/efficiency docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2.trec-tb-2005.efficiency')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Not Relevant | 35K | 77.0% |
1 | Relevant | 7.8K | 17.2% |
2 | Highly Relevant | 2.6K | 5.8% |
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2005/efficiency")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2005/efficiency qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.gov2.trec-tb-2005.efficiency.qrels') # AdhocAssessments
for topic_qrels in qrels.iter():
print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@inproceedings{Clarke2005TrecTerabyte, title={The TREC 2005 Terabyte Track}, author={Charles L. A. Clark and Falk Scholer and Ian Soboroff}, booktitle={TREC}, year={2005} }{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } }, "queries": { "count": 50000 }, "qrels": { "count": 45291, "fields": { "relevance": { "counts_by_value": { "0": 34884, "1": 7772, "2": 2635 } } } } }
The TREC Terabyte Track 2005 named page ranking benchmark. Contains 252 queries with titles that resemble bookmark labels. Relevance judgments include near-duplicate pages and other pages that may satisfy the bookmark label.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2005/named-page")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2005/named-page queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.gov2.trec-tb-2005.named-page.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from gov2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2005/named-page")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2005/named-page docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2.trec-tb-2005.named-page')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Not Relevant | 0 | 0.0% |
1 | Relevant | 12K | 100.0% |
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2005/named-page")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2005/named-page qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.gov2.trec-tb-2005.named-page.qrels') # AdhocAssessments
for topic_qrels in qrels.iter():
print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@inproceedings{Clarke2005TrecTerabyte, title={The TREC 2005 Terabyte Track}, author={Charles L. A. Clark and Falk Scholer and Ian Soboroff}, booktitle={TREC}, year={2005} }{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } }, "queries": { "count": 252 }, "qrels": { "count": 11729, "fields": { "relevance": { "counts_by_value": { "1": 11729 } } } } }
The TREC Terabyte Track 2006 ad-hoc ranking benchmark. Contains 50 queries with deep relevance judgments.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006")
for query in dataset.queries_iter():
query # namedtuple<query_id, title, description, narrative>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006 queries
[query_id] [title] [description] [narrative]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.gov2.trec-tb-2006.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from gov2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006 docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2.trec-tb-2006')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Not Relevant | 26K | 81.6% |
1 | Relevant | 5.5K | 17.1% |
2 | Highly Relevant | 426 | 1.3% |
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006 qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.gov2.trec-tb-2006.qrels') # AdhocAssessments
for topic_qrels in qrels.iter():
print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} }{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } }, "queries": { "count": 50 }, "qrels": { "count": 31984, "fields": { "relevance": { "counts_by_value": { "0": 26091, "1": 5467, "2": 426 } } } } }
The TREC Terabyte Track 2006 efficiency ranking benchmark. Contains 100,000 queries from a search engine, including the 50 topics from gov2/trec-tb-2006. Only the 50 topics have judgments.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/efficiency")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/efficiency queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.gov2.trec-tb-2006.efficiency.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from gov2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/efficiency")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/efficiency docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2.trec-tb-2006.efficiency')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Not Relevant | 26K | 81.6% |
1 | Relevant | 5.5K | 17.1% |
2 | Highly Relevant | 426 | 1.3% |
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/efficiency")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/efficiency qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.gov2.trec-tb-2006.efficiency.qrels') # AdhocAssessments
for topic_qrels in qrels.iter():
print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} }{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } }, "queries": { "count": 100000 }, "qrels": { "count": 31984, "fields": { "relevance": { "counts_by_value": { "0": 26091, "1": 5467, "2": 426 } } } } }
Small stream from gov2/trec-tb-2006/efficiency, with 10,000 queries.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/efficiency/10k")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/efficiency/10k queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.gov2.trec-tb-2006.efficiency.10k.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from gov2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/efficiency/10k")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/efficiency/10k docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2.trec-tb-2006.efficiency.10k')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Bibtex:
@inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} }{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } }, "queries": { "count": 10000 } }
Stream 1 of gov2/trec-tb-2006/efficiency (25,000 queries).
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/efficiency/stream1")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/efficiency/stream1 queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.gov2.trec-tb-2006.efficiency.stream1.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from gov2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/efficiency/stream1")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/efficiency/stream1 docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2.trec-tb-2006.efficiency.stream1')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Bibtex:
@inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} }{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } }, "queries": { "count": 25000 } }
Stream 2 of gov2/trec-tb-2006/efficiency (25,000 queries).
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/efficiency/stream2")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/efficiency/stream2 queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.gov2.trec-tb-2006.efficiency.stream2.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from gov2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/efficiency/stream2")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/efficiency/stream2 docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2.trec-tb-2006.efficiency.stream2')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Bibtex:
@inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} }{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } }, "queries": { "count": 25000 } }
Stream 3 of gov2/trec-tb-2006/efficiency (25,000 queries).
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/efficiency/stream3")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/efficiency/stream3 queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.gov2.trec-tb-2006.efficiency.stream3.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from gov2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/efficiency/stream3")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/efficiency/stream3 docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2.trec-tb-2006.efficiency.stream3')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Not Relevant | 26K | 81.6% |
1 | Relevant | 5.5K | 17.1% |
2 | Highly Relevant | 426 | 1.3% |
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/efficiency/stream3")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/efficiency/stream3 qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.gov2.trec-tb-2006.efficiency.stream3.qrels') # AdhocAssessments
for topic_qrels in qrels.iter():
print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} }{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } }, "queries": { "count": 25000 }, "qrels": { "count": 31984, "fields": { "relevance": { "counts_by_value": { "0": 26091, "1": 5467, "2": 426 } } } } }
Stream 4 of gov2/trec-tb-2006/efficiency (25,000 queries).
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/efficiency/stream4")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/efficiency/stream4 queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.gov2.trec-tb-2006.efficiency.stream4.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from gov2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/efficiency/stream4")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/efficiency/stream4 docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2.trec-tb-2006.efficiency.stream4')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Bibtex:
@inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} }{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } }, "queries": { "count": 25000 } }
The TREC Terabyte Track 2006 named page ranking benchmark. Contains 181 queries with titles that resemble bookmark labels. Relevance judgments include near-duplicate pages and other pages that may satisfy the bookmark label.
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/named-page")
for query in dataset.queries_iter():
query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/named-page queries
[query_id] [text]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
topics = prepare_dataset('irds.gov2.trec-tb-2006.named-page.queries') # AdhocTopics
for topic in topics.iter():
print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from gov2
Language: en
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/named-page")
for doc in dataset.docs_iter():
doc # namedtuple<doc_id, url, http_headers, body, body_content_type>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/named-page docs
[doc_id] [url] [http_headers] [body] [body_content_type]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
dataset = prepare_dataset('irds.gov2.trec-tb-2006.named-page')
for doc in dataset.iter_documents():
print(doc) # an AdhocDocumentStore
break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Not Relevant | 1.6K | 65.8% |
1 | Relevant | 807 | 34.2% |
Examples:
import ir_datasets
dataset = ir_datasets.load("gov2/trec-tb-2006/named-page")
for qrel in dataset.qrels_iter():
qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export gov2/trec-tb-2006/named-page qrels --format tsv
[query_id] [doc_id] [relevance] [iteration]
...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset
qrels = prepare_dataset('irds.gov2.trec-tb-2006.named-page.qrels') # AdhocAssessments
for topic_qrels in qrels.iter():
print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} }{ "docs": { "count": 25205179, "fields": { "doc_id": { "max_len": 17, "common_prefix": "GX" } } }, "queries": { "count": 181 }, "qrels": { "count": 2361, "fields": { "relevance": { "counts_by_value": { "1": 807, "0": 1554 } } } } }